具有随机效应和AR(1)误差的非线性模型中自相关系数的统计诊断

来源 :东南大学 | 被引量 : 0次 | 上传用户:zsjhmya
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纵向数据分析是当前统计学的热点课题之一,分析的目的是探索各受试单元在不同时间或空间上的重复观测数据的统计性质。在纵向数据中不可避免地存在异常数据,已有一些统计学家对纵向数据模型进行统计诊断。Banerjee&Frees(1997),Lesafire & Verbeke(1998)用影响曲率对线性随机效应模型进行了分析;Banerjee(1998),nans et al(2001)讨论了线性随机效应模型中的Cook距离;Chi&Reinsel(1989)检验了线性纵向数据模型中自相关性的存在性。但是,对存在自相关的纵向数据模型中自相关系数的诊断问题还没有文献研究,本文系统研究该问题。 第二章利用影响曲率对具有AR(1)误差的非线性随机效应模型的自相关系数的扰动诊断进行分析。首先在自相关系数无扰动的情况之下,推导出非线性随机效应模型参数的极大似然估计以及模型的对数似然函数关于参数的二阶导数的表达式;其次在自相关系数扰动的情况下,导出受扰动的模型的对数似然函数关于参数的相关导数的表达式,从而得到了影响曲率的表达式;最后利用血浆药物渗透数据(Davidian & Gilinan,1995)和随机模拟来说明分析方法的有效性。 第三章利用影响曲率对具有AR(1)误差的非线性混合效应模型的自相关系数的扰动诊断进行分析。首先在自相关系数无扰动的情况之下,推到出非线性混合模型参数的极大似然估计以及模型的对数似然函数关于参数的二阶导数的表达式;其次在自相关系数扰动的情况下,导出受扰动的模型的对数似然函数关于参数的相关导数的表达式,也得到了影响曲率的表达式。鉴于非线性混合效应模型本身所特有的复杂性,提出一种修正的Cook距离形式,并对具有AR(1)误差的非线性混合效应模型的影响单元进行统计诊断.最后利用桔树生长数据和随机模拟来说明分析方法的应用。 第四章为了说明我们的统计诊断量的有效性,本章我们将通过模拟计算来进一步说明我们方法的有效性。 综上所述,本文比较深入系统地对具有AR(1)误差的非线性随机效应模型和非线性混合效应模型中的自相关系数扰动进行了分析,并且提出非线性混合效应模型中Cook距离,数值实例和随机模拟表明这些诊断统计量都是很有效的。
其他文献
期刊
小波分析是近年来迅速发展起来的的一门应用数学学科,系统的研究开始于20世纪80年代初期。它从产生到现在虽然仅仅几十年的时间,但它在信号传输、图像处理、数字水印、偏微分方
学位
本文主要介绍了一些不同类型的Fuzzy自动机的相关理论,Fuzzy有限自动机的最小化理论,词计算的概念,以及基于词计算的Fuzzy有限自动机的最小化问题。同时作者在舒兰教授提出的最
随着大规模数据库的广泛使用和Internet的迅猛扩展,全球范围内数据库中存储的数据量迅速增大。如何从海量的、多样的数据中挖掘潜在的、有利用价值的信息,即数据挖掘((Data Min