论文部分内容阅读
鸮形目鸟类经过亿万年的自然选择和生物进化,其躯体具有独特的降噪能力,能够实现静音飞行。因此,研究鸮形目鸟类的静音飞行机理,对于探索噪声抑制的新原理和新技术,以及降低工程应用中的噪声污染具有重要的启发意义。本文为进一步揭示鸮形目鸟类静音飞行机理,促进降噪材料的仿生研究,以长耳鸮为主要研究对象,并与金雕和信鸽进行对比,定量研究了三种鸟类初级飞羽跨尺度多级分叉结构的几何形态、材料粘弹阻尼和减振性能,并基于生物异速增长模型给出了长耳鸮初级飞羽多级分叉结构的几何尺寸跨尺度联系和材料力学特性跨尺度联系。同时,针对微机电系统(MEMS)中结构、器件的振动控制需求,通过实验测试研究了聚合物SU-8光刻胶材料的力学特性参数和阻尼性能,旨在为MEMS领域仿生降噪结构或器件的设计和制造提供理论基础。论文的工作与成果包括以下几个方面:(1)长耳鸮、金雕和信鸽三种鸟类初级飞羽多级分叉结构的形态学研究。对比观测结果表明,长耳鸮初级飞羽具有均匀细长的羽纤枝和羽小枝、狭长卷曲的羽枝腹缘。初级飞羽多级分叉结构几何尺寸参数结果表明,长耳鸮初级飞羽多级分叉结构长径比大于金雕和信鸽,同时其分支斜生角度值基本恒定,平均值为44.3°。(2)三种鸟类初级飞羽多级分叉结构的材料粘弹阻尼性能研究。采用Instron 3345单立柱试验系统与自主开发的微拉伸测试系统,分别对三种鸟类初级飞羽羽干、羽枝和羽小枝进行恒定速率的单轴拉伸实验研究。采用标准线性固体模型分析羽毛材料在拉伸过程中的粘弹力学行为,并计算得到羽毛分支结构的粘弹性参数(E1、E2、η)和损耗因子(tan δ)。对比发现,三种鸟类初级飞羽中,长耳鸮初级飞羽分支结构具有最优异的材料阻尼性能。(3)三种鸟类初级飞羽及其羽枝结构的减振特性研究。基于精密位移测量与超高速摄像技术,分别对三种鸟类飞羽整体及其羽枝结构进行自由振动实验研究,并得到初级飞羽整体、羽枝结构的阻尼比(ζe)。结果表明,长耳鸮初级飞羽结构的阻尼比值高于金雕和信鸽,因而其飞羽在振翅过程中能耗散更多的振动能量,从而对羽毛结构振动和相互摩擦诱发的机械性噪声及羽毛结构四周气流扰动引起的气动性噪声进行有效抑制。(4)长耳鸮初级飞羽跨尺度多级分叉结构的异速增长关系研究。根据几何尺寸参数测试结果,三种鸟类初级飞羽分支直径和分支长度之间的几何属性联系可以采用异速增长模型描述。同时基于异速增长模型建立了长耳鸮初级飞羽跨尺度多级分叉结构材料特性参数(E1、η)和分支长度间的属性联系,为材料仿生设计提供依据。(5)基于自主开发的微拉伸测试系统,测试研究12种不同长宽比尺寸的聚合物SU-8胶双端固支梁试样的力学特性参数。根据实验结果,提出了有效长宽比是微尺度下表征SU-8材料杨氏模量和最大应变尺寸效应的重要参数,可为其仿生设计提供参考。同时基于DMA测试研究了SU-8矩形薄膜的阻尼性能。结果表明SU-8薄膜在75℃~150℃范围内,其损耗因子达到0.08~0.21。在未来的研究中,可以通过对其进行改性研究,以提高其阻尼性能和力学性能,为跨尺度减振结构,尤其是微尺度减振结构的设计和制造打下基础。