论文部分内容阅读
随着产业升级、整合和集群的持续推进,制造系统日趋复杂。高效企业物流系统已成为现代制造业构成的关键要素之一。企业希望通过新厂房布局优化设计和老厂房布局调整解决原有车间布局不合理、物流迂回、在制品多、浪费严重、调度混乱等问题。本文针对一类离散作业、流水作业和特殊作业等多种作业单元共存的混合制造模式,研究了大型混合作业车间布局新问题。如何有效进行一类典型的大型混合制造作业车间布局设计与优化已成为目前国内制造业迫切需要解决的科学问题。布局问题实质就是一个多目标优化问题。现有的车间布局特别对大型混合作业车间布局问题在建模、求解及布局调度低熵协同优化等方面有待完善。本文旨在实现反映生产实际的大型混合作业车间布局自适应建模和低熵协同优化,为一类复杂作业车间布局多目标设计和持续改善提供有效的分析技术与工具。本文主要研究内容如下:(1)构建了大型混合作业车间布局数学模型。在分析大型混合作业车间原型特征基础上,为寻求最佳占空比、最少在制品数量、最低物流损耗和重构成本、最大化非物流关系、良好的柔性和可拓展性等,明确大型混合作业布局约束条件。融合脑模型连接控制器(CMAC)的任意多维非线性映射机理,解决了大型混合作业车间布局模型中部分子目标量纲不一致的问题;考虑车间布局问题的复杂性、动态性和不确定性,引入描述外部环境扰动因素的动态变量;实现大型混合作业车间动态布局的自适应建模。(2)提出了一种基于差分进化(DE)和元胞种群拓扑结构的两阶段动态差分智能细胞机算法(DDEACA)。通过对个体的邻居结构进行调整,实现进化种群由结构化种群过渡到非结构化种群的效果,较好地兼顾全局搜索和局部寻优之间的协同问题;同时对外部种群保留的对象进行调整及完全反馈,提高算法的收敛速度。将智能体机制引入细胞种群,采用两阶段的外部种群多样性维护方法,将扰动因子引入变异操作使其跳出局部最优困境。通过对DTLZ和WFG系列基准函数测试表明,新算法相对于其它四种典型算法能获得更好的Pareto前端和竞争性的收敛结果。(3)将构建的大型混合作业车间布局模型及DDEACA多目标优化算法应用于车间布局实例,实现了大型混合作业车间布局的多目标优化。实例计算与结果分析进一步验证了模型和算法的有效性。(4)在车间调度关键参数关联和布局脆弱性分析基础上,将同态变换求解思想引入车间布局调度的低熵协同优化问题并进行实例解析,实现制造系统的高效有序运作。