关于Orlicz-Sobolev不等式

来源 :北京师范大学 | 被引量 : 0次 | 上传用户:irolu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究Orlicz范数下的泛函不等式,这是对已有的Sobolev不等式的自然推广,对于非线性动力系统的研究有重要应用.具体来说,我们考虑如下三个方面的问题:Orlitz-Sobolev不等式和其他不等式的关系、带幂的Orlitz型不等式和Orlitz-Sobolev不等式的扰动.为此,全文共分为三个部分:   在第一部分,我们着重考虑Orlitz范数的性质以及Orlicz-Sobolev不等式与其他的不等式如超Poincare和F-Sobolev型不等式之间的关系.此外,我们还给出有关F-Sobolev型不等式和超Poincare不等式之间关系的一些结果。   在第二部分,基于给定Dirichlet型的Orlicz-Sobolev不等式,我们对于带幂的生成元对应的二次型建立了同型不等式,并给出一些例子说明主要结果的最优性。   我们在第三部分考虑OrliczSobolev不等式的扰动,其中扰动函数可以无界,但需满足Lipschitz条件。为此我们采用熟知的截断方法.用相同的方法,我们还得到了Lipschitz条件下超Poincare和Poincare不等式的相似结果。
其他文献
在市场经济高速发展带动下,社会对会计人才的需求也随之不断增多,但是由于种种因素的制约,近年来中职会计专业毕业生也广泛出现就业难的状况,从事会计对口专业的学生比例也随
小学升初中是人生的一次飞跃,如何使初一新生尽快适应中学生活,成了初一班主任、任课教师、家长等普遍关心的话题。对于从小学到初中的学生来说,他们面临诸多变化:①学校环境
本文主要利用形变引理,研究不光滑泛函的临界点定理,及其在拟线性椭圆型方程中的应用.本文分为四章,第一章为绪论。第二章主要研究自然增长条件下的拟线性椭圆型方程解的存在性。
反问题已在众多的科学领域中被提出,其一般具有不适定的性质,只有采用特殊的方法才能得到该类问题的稳定解,正则化方法是公认的求解这类问题的有效工具。所谓一个问题是适定的,
可逆逻辑综合在量子计算和解决计算机热耗问题中起着关键性的作用,而可逆逻辑综合的规模一直是研究者们关心的重要内容,ω阶的可逆逻辑函数共有2ω!个,随着阶数的增长,可逆逻辑函
在欧债危机发生的全球新经济形势下,各国经济对国际投资和国际贸易的依存程度普遍提高,一方面跨国公司将参与全球范围的激烈竞争;另一方面跨国公司将面临着更为广阔的市场容量,为其扩大规模经营带来了机遇。我国企业面对其他跨国公司的巨大压力必须积极参与国际市场的竞争,特别是当前我国的外汇储备较高,并且面临着巨大的市场机遇时,对我国FDI行为的策略选择的研究尤为重要。本文将在我国FDI发展现状的基础上,从市场角
奇异扰动问题的解在局部区域急剧变化,使得其在均匀网格下的数值解精度偏低。而自适应网格方法,能在不改变网格总节点数的情况下,有效地把网格点聚集在解变化剧烈的区域,从而使问
学位
本文研究区间不确定分数阶线性定常系统的鲁棒稳定性问题以及在分数阶区间多项式中的推广,主要探讨利用区间分数阶线性定常系统的系统矩阵来验证系统的鲁棒稳定性。具体包括以
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊