【摘 要】
:
位错运动是晶体材料塑性变形的主要微观机制。然而,现有理论在以下三个与位错运动相关的问题上,尚存在明显欠缺。首先,晶格阻力作为位错运动最基本的阻力,它的理论计算结果与实验相比,一直存在高估问题。其次,位错扫过滑移面后,晶格释放的弹性能对位错进一步运动的影响,一直未被关注。第三,晶体的韧脆转变现象尚缺乏与直接的实验观察相对应的统一理论。为此,本文通过建立新模型对位错运动的晶格阻力、位错运动辐射弹性波的
论文部分内容阅读
位错运动是晶体材料塑性变形的主要微观机制。然而,现有理论在以下三个与位错运动相关的问题上,尚存在明显欠缺。首先,晶格阻力作为位错运动最基本的阻力,它的理论计算结果与实验相比,一直存在高估问题。其次,位错扫过滑移面后,晶格释放的弹性能对位错进一步运动的影响,一直未被关注。第三,晶体的韧脆转变现象尚缺乏与直接的实验观察相对应的统一理论。为此,本文通过建立新模型对位错运动的晶格阻力、位错运动辐射弹性波的传播与干涉效应以及金属的韧脆转变温度进行了解析计算,并得到了以下结果:1、通过计算位错核心在相邻平衡位置间跳跃时与留在原位置的自身应力场之间的相互作用,建立了求解晶格阻力的基本公式,解决了对晶格阻力的高估问题。同时,通过将位错的应力场范围与位错密度相关联,打破了位错运动晶格阻力与位错间作用力之间的绝对界限。2、位错扫过滑移面之后,原位置畸变消除释放的能量将以弹性波或声子的形式辐射,并在一定条件下发生干涉相消,相消的能量被位错所吸收,并用于克服继续运动的势垒。这从解析层面预言了位错的无辐射运动,与前人数值计算结果相一致。3、假定晶体中裂纹优先扩展和裂纹尖端位错源优先开动之间的竞争结果决定着材料的韧性,利用裂尖位错源开动的临界能量条件,获得韧脆转变温度的解析表达式,并得到了与实验符合的参数依赖关系,解释了常规力学实验中韧性数据发散性的原因。
其他文献
随着航空航天工业的发展,对轻质、高强、高温抗氧化性能材料的要求越来越高,而Ti2AlNb基合金具有密度低、比强度高、热强度好以及耐高温腐蚀性好等特点,因而得到了广泛的关注。Ti2AlNb基合金材料结构件多以热成型方式进行制备加工,但由于其热变形抗力大,有效热加工窗口较窄,成材率不高,组织对成型工艺很敏感等问题,使得Ti2AlNb基合金进行塑性加工比较困难,成为了 Ti2AlNb基合金大规模生产的瓶
钛及钛合金具有比强度高、耐腐蚀性好等优点,被广泛应用于航空、航天、化工等领域。变形加工是钛合金部件的主要成型工艺。作为密排六方结构金属重要的塑性变形机制,形变孪生能够在提高钛强度的同时不损失塑性,因而在钛板中引入高密度孪晶是提高其力学性能的重要思路。不同类型孪生及变体对钛的微观组织与力学性能影响各异,阐明变形过程中孪生择优规律及孪晶与其他界面间的相互作用,是实现对变形组织和织构的预测和调控的基础,
亚共晶铝硅合金中初生铝(α-Al)的细化和共晶硅(Si)的变质是提高合金铸造成形性和力学性能的重要手段。稀土(RE)被广泛研究证明既可以作为细化剂使α-Al晶粒细化,又可作为变质剂改善共晶Si的粗大片层状形貌,RE具有的低成本优势也推动其得到研究。然而,RE的细化作用容易受到添加量和铸造工艺参数(静置时间、冷却速度等)的影响,其细化机理还没有准确的定论;此外,在较高冷速下,RE变质共晶Si的微观机
硅衬底GaN基微盘激光器模式体积小、功耗低,在光电集成、单光子发射、化学生物探测等领域具有重要的应用前景。常规GaN基微盘激光器采用空气为光场限制层的“蘑菇状”结构,电注入难、热阻较高,仅实现了光泵浦激射。本论文围绕硅衬底GaN基微盘激光器的载流子输运、光场调控、光损耗抑制和热传导等关键科学问题,从结构设计、材料生长、器件制备和表征分析等多方面进行了深入研究。取得的结果如下:(1)创新性提出了“三
海洋环境下钢筋腐蚀问题严重,导致混凝土结构的耐久性和安全性下降。本文以低合金钢筋为研究对象,以合金元素Cr和氯敏阻锈剂对钢筋长期腐蚀行为的影响机理为研究目标,采用自然环境挂片实验、现代物理表征技术、电化学检测方法、第一性原理模拟计算、机器学习等手段,研究了含Cr低合金高强钢筋在微溶液中的腐蚀电化学机理及其在自然环境中的长期腐蚀行为、氯敏阻锈剂对高强钢筋的长期缓蚀行为和机制、Cr和氯敏阻锈剂对高强钢
锌及锌合金由于具有良好的生物相容性和可降解性而成为新一代可降解血管支架材料。但是,由于缺乏严格的测试标准,锌及锌合金的降解机理尚未达成共识。液体环境是影响金属材料腐蚀行为的一个重要因素。体外测试时,模拟体液中的无机盐及有机成分(如蛋白质)的差异会使材料表现出不同的腐蚀行为。因此,围绕液体成分对腐蚀的影响这一问题,利用电化学测试和浸泡实验研究了纯锌在不同模拟体液中的腐蚀行为,并研究了腐蚀对力学性能的
多形性转变是一类只发生结构转变而成分不变的相变。研究合金的多形性转变,不仅可以加深对其相结构的理解,而且可以指导合金的组织与性能调控。压力是影响多形性转变的主要因素之一,在已报道的合金材料压力下的多形性转变研究工作中,主要以单主元固溶体合金为主。对于多主元合金的多形性转变以及与组元之间的关系研究较少,仍有待进一步探讨。高熵合金,通过混合多主元带来最大化混合熵的成分设计理念,可以获得单相固溶体结构。
传统高锰钢(Hadfield钢)在室温下能获得单相奥氏体,具有优良的加工硬化能力和抗冲击能力,因此广泛用作冲击载荷下的耐磨材料。然而较低的屈服强度和初始硬度,导致材料在低冲击载荷下不能完全发挥其耐磨性就发生塑性变形,降低了使用寿命。本文设计出一种轻质超高锰钢(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服强度、高初始硬度、良好冲击韧性等特点,适用于低冲击载荷下的磨损条件。通过研究
膏体充填技术是金属矿绿色开采的重要发展方向,深锥浓密是膏体充填的关键技术之一,全尾砂在深锥浓密机给料井内快速形成絮团是实现全尾砂料浆深度浓密的前提。论文以给料井内全尾砂絮凝行为作为研究对象,以絮凝过程的定量描述与工艺参数的优化为目的,主要研究工作包括:1)研究了全尾砂固体质量分数、絮凝剂单耗、絮凝剂溶液浓度和剪切速率等因素对全尾砂絮凝行为的影响,以絮团平均加权弦长峰值、絮凝的全尾砂料浆的初始沉降速