论文部分内容阅读
多年冻土退化对土壤碳氮循环具有重要影响,全球气候变暖背景下多年冻土区土壤有机碳的分解过程是碳循环研究的重要内容,然而目前关于多年冻土区土壤有机碳储量及其潜在释放的研究主要集中在高纬度地区。青藏高原多年冻土区面积约占全球多年冻土面积的6%。青藏高原具有温度高、厚度薄及热状态极不稳定等特征,在全球气候变暖背景下,青藏高原多年冻土退化强烈,其碳释放潜力可能会远大于高纬度多年冻土区。然而,我们目前对青藏高原多年冻土区土壤有机碳的总储量了解很少,而且对多年冻土退化过程是如何影响其有机碳分解及温室气体释放等方面的研究几乎是空白。本论文主要通过野外观测及室内实验,力图估算青藏高原多年冻土区有机碳的总储量及有机碳的分解速率。主要从以下几个方面进行研究:(1)基于已发表的资料及本项目数据,利用706个土壤样点系统估算青藏高原多年冻土区土壤有机碳储量,并与阿拉斯加多年冻土区土壤碳特征进行比较;(2)分析祁连山黑河上游俄博岭多年冻土区土壤碳氮性质及其分布特征,实地监测土壤碳通量,并分析其与环境因子的关系;(3)利用活动层及多年冻土层的土壤样品进行培养,实验模拟温度升高过程中的土壤有机碳分解速率变化规律及微生物产生的热量对土壤温度升高的影响;(4)探讨多年冻土退化形成的热融湖塘水体中溶解性有机碳与温室气体的特征及其碳分解过程。主要结论如下: 青藏高原多年冻土区土壤有机碳(SOC)储量为:0~1m范围内15.29 Pg;1~2m范围内4.84Pg;2~3m深度内3.89Pg;3~25m深度内43.19Pg。总结来说,青藏高原多年冻土区SOC总储量约为67.2Pg,约是北半球多年冻土区碳储量的4%,其中的47.08 Pg(70.1%)存储于多年冻土层中。高寒草甸、高寒草原和高寒荒漠生态系统中SOC储量分别为32.39Pg、38.79Pg和0.82Pg。青藏高原多年冻土区SOC在0~6m深度含量变化较大,表明其碳存储深度的变异性要大于北半球多年冻土区(0~3m)。因此,青藏高原多年冻土区SOC对全球气候变化具有潜在贡献。 本研究选择多年冻土退化明显、且SOC含量较高的祁连山黑河上游俄博岭多年冻土区为研究区域,探索多年冻土区碳潜在释放及其微生物过程。研究表明,黑河上游俄博岭多年冻土层中SOC、总氮(TN)和土壤无机碳(SIC)含量(依次为71.7kg m-2、8.0kg m-2、34.7kg m-2)均高于活动层中的含量(依次为44.2kgm-2、5.3kg m-2、12.2kg m-2)。土壤剖面上的稳定碳同位素(δ13C-SOC)分析结果表明,水文条件和成土过程是影响多年冻土区SOC形成的重要因素。多年冻土过渡层及深层土壤的δ13C-SOC和C/N比值表明了土壤剖面上SOC的可降解性方面存在明显差异。多年冻土层中水溶解性有机碳(WSOC)含量比活动层中的含量高,表明多年冻土层土壤中的活性碳含量更高。多年冻土层SIC和冷生结构是影响SOC和TN分布的重要因素,且SIC、pH值和C/N比值间呈显著的负相关关系。全球气候变暖背景下,多年冻土上限附近及深层(414~448cm)土壤是主要的潜在甲烷释放区。多年冻土层(280~350 cm)溶解性有机碳(DOC)和热水提取的碳(HWC)在土壤形成过程中会被微生物分解利用,其微生物过程使δ13C-DOC和δ13C-HWC均增加了约3‰,而且HWC更容易被微生物利用。 黑河上游俄博岭多年冻土区碳通量监测结果表明该高寒草甸生态系统碳释放具有较大潜力。多年冻土区融化期CO2和CH4通量平均为157.8μmol CO2min-1m-2、0.11μmol CH4min-1 m-2;而在冻结期明显降低,平均值为2.39μmol CO2 min-1m-2,CH4释放速率低于检出限。活动层厚度越大,土壤温度越高,CO2和CH4释放速率越快。而且多年冻土区微地形也是影响温室气体释放的重要因素。 从负温到正温的升温实验模拟研究过程中,CO2释放速率逐渐增强。相对于多年冻土融化后的土壤,多年冻土温度升高对土壤有机碳分解速率影响较大。从-5℃升温至-0.5℃,土壤碳释放速率增加482.8%(±60%);然而从0.5℃升温至5℃,碳释放速率增加102.0%(±37.5%)。这表明伴随温度升高,冻结的多年冻土有机碳比融化了的有机碳更容易被微生物分解。而且在-5~-0.5℃时,矿质土的碳释放速率升高幅度比有机土的要大。基于δ13C-SOC和δ13C-CO2分析表明,释放的CO2主要来自10~20cm活动层及245~255cm和285~295cm土层中的有机碳。碳释放过程中微生物产生的热量对土壤温度升高具有一个放大效应:负温、正温时微生物本身产生的热量导致土壤温度升高幅度与培养温度间分别呈一指数、线性相关关系。负温时多年冻土上限附近的有机碳更容易被微生物分解利用,而正温时多年冻土深层土壤对温度升高更敏感。微生物产生的热量最终导致土壤温度升高幅度大于大气环境温度升高幅度。 多年冻土退化会造成大面积的热融湖塘形成,导致溶解性有机碳和温室气体富集在热融湖塘水体中。青藏高原热融湖塘分布广泛,水体中溶解的CO2比CH4浓度高。水体中DOC浓度随着湖体深度(<1.5m)和电导率的增加而升高。水中溶解性无机碳(DIC)(δ13C:-15.2~4.6‰)主要来自碳酸盐(δ13C:-3~3‰)和DOC的异养呼吸作用(δ13C<-8‰)。湖底沉积物有机质和水中DIC也是影响湖塘水体中溶解CO2的重要因素。CH4稳定碳同位素值(δ13C-CH4:-58.2~-16.5‰)较低,表明CH4主要来自于微生物分解有机质的过程,且夏末时微生物的厌氧呼吸更强烈。青藏高原热融湖塘可能也是多年冻土区温室气体释放的重要来源。 本文初步探索了青藏高原多年冻土区土壤碳储量特征,并通过培养实验研究了碳的分解及微生物产热过程。在自然条件下,多年冻土退化对多年冻土区有机碳的影响十分复杂,例如多年冻土退化还会改变土壤的水分条件,并由此影响温室气体的释放过程。在今后的研究中还要进一步开展不同生态系统多年冻土退化对温室气体释放潜力的机制方面研究,并进而为相关的模型研究提供参数,进而加深多年冻土区对全球气候变化的反馈潜力和过程的认识。