论文部分内容阅读
近年来,廉价、易得、结构易调变且能满足工业生产需求的Cu基催化剂已被广泛应用于合成气(CO+H2)转化生成C2氧化物(尤其是乙醇)反应。目前,对于Cu0和Cu+活性位上合成气转化反应中的作用已经有了明确认识,但是,Cuδ+(0<δ<1)活性位在催化合成气转化生成C2氧化物中作用机制尚不清楚。同时,Cu基催化剂上合成气合成乙醇反应机理已明确,包含两个关键步骤,一是CO活化转化形成CHx(x=1-3)中间体,伴随OH中间体形成;二是CO/CHO插入CHx(x=1-3)单体形成C2氧化物;目前,研究表明OH中间体能够助催化相关反应,但是CHx(x=1-3)中间体仅考虑作为参与反应的中间体,能否如OH中间体在催化反应中起到助催化的作用。基于上述两方面的问题,本论文以Cu催化剂上合成气转化生成C2氧化物反应为研究对象,采用量子化学计算方法,在电子–分子水平上定量阐明了不同价态Cuδ+(0≤δ≤1)活性位对该反应的催化性能调控,探究了关键中间体CHx在反应中的助催化微观作用机制;研究结果为合成气转化生成C2氧化物反应中高性能Cu基催化剂的制备和理性设计提供了目标结构线索,丰富合成气转化反应的催化基础理论。获得的主要结论如下:一、在合成气转化生成C2氧化物反应中,定量描述了Cu催化剂中不同价态Cuδ+(0≤δ≤1)活性位与该反应催化性能之间的本质关系;明确了适中价态Cuδ+活性位是高活性、高选择性生成C2氧化物的本征活性位;二者对于理解Cu催化剂在多相催化中的催化本质具有重要意义。(1)基于已有实验研究结果,拟合了真实合成气转化反应条件下,Cu基催化剂价态的动态变化过程,构建了一系列能够准确描述真实反应条件下Cuδ+(0≤δ≤1)活性位价态变化的催化剂模型。(2)不同价态Cuδ+(0≤δ≤1)活性位影响合成气转化生成关键中间体CHx的选择性和活性。Cuδ+(0≤δ≤1)活性位上最有利的关键中间体CHx均为CH2,但是,Cuδ+活性位价态影响生成CH2的活性和选择性。高价态和低价态的Cu+和Cu0活性位上,甲醇生成选择性高于CHx;中等价态0.43和0.51的Cuδ+活性位对CH2的生成显示了较高的活性和选择性。(3)不同价态Cuδ+(0≤δ≤1)活性位影响C2氧化物生成的选择性和活性。起始于最有利关键中间体CH2,在不同价态Cuδ+(0≤δ≤1)活性位上CH2中间体的相关反应表明:中等价态0.43和0.51的Cuδ+活性位能够显著提高C2氧化物CH2CHO生成的活性和选择性。(4)定量阐明了不同价态Cuδ+(0<δ<1)活性位调控合成气转化生成C2氧化物反应的活性和选择性。即高和低价态的Cu+和Cu0活性位上,甲醇为主要产物,已被实验验证;中等价态0.43和0.51的Cuδ+活性位能够高活性、高选择性地催化合成气转化生成C2氧化物;同时,电子性质分析揭示d带中心靠近费米能级的Cuδ+(0≤δ≤1)活性位对合成气转化生成C2氧化物具有高的活性。因此,实验制备的Cu基催化剂要集中在具有中等价态Cuδ+(δ=0.43和0.51)活性位的亚稳态结构。二、在合成气转化生成C2氧化物反应中,揭示了Rh改性Cu基催化剂表面吸附CHx(x=1-3)中间体作为共吸附助剂在促进催化性能中的助催化作用新机制,称为CHx助催化作用新机制。该机制为深入认识反应关键中间体或中间产物在催化反应中的作用提供了全新的视角。(1)Rh改性Cu基催化剂表面吸附CHx(x=1-3)中间体(即CHx(x=1-3)/RhCu)影响CO活化转化生成关键中间体CHx的选择性和活性。在RhCu和CHx(x=1-3)/RhCu上,最有利中间体CHx均为CH2,其中,RhCu上甲醇生成优于中间体CHx生成;但是,CHx(x=1-3)/RhCu不仅促进了中间体CH2生成,而且抑制了甲醇生成,特别是CH2中间体作为共吸附助剂,对其自身的生成表现出最优的催化活性和选择性。(2)Rh改性Cu基催化剂表面吸附CHx(x=1-3)中间体影响生成C2氧化物的选择性和活性;起始于最有利中间体CH2,RhCu和CHx(x=1-3)/RhCu上CH2中间体相关反应表明:RhCu催化剂上CH4与C2氧化物CH2CHO的生成在动力学上竞争;但是,与RhCu相比,CHx(x=1-3)/RhCu对C2氧化物生成具有更好的选择性,特别是CH2中间体作为反应中的主要单体在促进C2氧化物形成中起主导作用。(3)在RhCu和CHx(x=1-3)/RhCu催化剂上,CO活化转化形成关键中间体CHx是反应的关键步骤,CHx(x=1-3)/RhCu催化剂上只要反应生成最有利CHx单体CH2,后续反应就能高活性和高选择性生成C2氧化物。(4)RhCu催化剂表面吸附CHx(x=1-3)中间体影响CO活化形成关键中间体CHx的微观本质:表面吸附CHx(x=1-3)中间体作为共吸附助剂降低了CO活化转化反应中关键中间体CHxO(x=0-3)和CHxOH(x=1,2)物种的吸附能力,导致这些物种在催化剂表面吸附位发生迁移;电子性质分析(Bader电荷、差分电荷、态密度和d带中心)揭示了迁移后的吸附位更有利于这些物种活化形成关键中间体CHx。