【摘 要】
:
热障涂层应用于航空发动机、燃气轮机等高温部件的热防护,需具备高隔热性能和良好的力学性能。大气等离子喷涂制备的热障涂层中难以避免出现孔隙,封闭的孔隙是不良的热导体,可以显著降热导率,提高隔热性能。小孔隙可以缓解热障涂层的应力,从而减小应力集中。大孔隙会在一定程度上降低其抗变形能力。因此,本文拟通过在热障涂层中引入微/纳米多尺度分布的孔隙结构(纳米、微米、数十微米),在保证高隔热性能的同时提高其抵抗变
【基金项目】
:
国家自然科学基金项目(编号:51771140);
论文部分内容阅读
热障涂层应用于航空发动机、燃气轮机等高温部件的热防护,需具备高隔热性能和良好的力学性能。大气等离子喷涂制备的热障涂层中难以避免出现孔隙,封闭的孔隙是不良的热导体,可以显著降热导率,提高隔热性能。小孔隙可以缓解热障涂层的应力,从而减小应力集中。大孔隙会在一定程度上降低其抗变形能力。因此,本文拟通过在热障涂层中引入微/纳米多尺度分布的孔隙结构(纳米、微米、数十微米),在保证高隔热性能的同时提高其抵抗变形的协调能力。同时,根据两机实际工况,研究涂层在1000℃、1050℃、1100℃下服役不同时间后组织性能变化,阐明多尺度孔隙结构热障涂层长期高温下组织和热力学性能的演变机制。取得以下重要结果:(1)通过在8YSZ中加入5 wt.%的Yb2O3和5 wt.%、10 wt.%、15 wt.%的Gd2O3,探究复合陶瓷的热物理性能。优化确定了5 wt.%Yb2O3和10 wt.%Gd2O3加入量的复合陶瓷综合性能最佳。因此,选择其作为陶瓷粉末制备热障涂层。(2)利用Ansys workbench有限元软件,模拟微/纳米多尺度孔隙的热障涂层在不同温度下服役不同时间后热导率的演变机制以及不同载荷下的压入特性。结果表明涂层的热导率随着测试温度的升高呈现下降趋势,随着孔隙率的增加而降低,随着服役时间的延长而升高,直到服役时间为60天后性能趋于稳定。在涂层中引入不同尺度孔隙后,尽管硬度、弹性模量会下降,但是断裂韧性有所提高。(3)通过陶瓷粉末和聚丙烯造孔剂的混合,喷涂具有微/纳米多尺度孔隙结构的热障涂层。研究表明孔隙呈现微/纳米多尺度分布,并且随着服役时间的增加微小封闭孔隙逐渐消失,较大孔隙联结,当服役时间到达60天后趋于稳定,Gd2O3和Yb2O3的加入可以提高8YSZ的稳定性。(4)利用激光闪光法,研究多尺度孔隙结构热障涂层高温下长期服役后热导率的演变机制。研究发现热障涂层的热导率随着温度的升高而下降,随着聚丙烯粉末含量的增加而降低。热障涂层的热导率随着服役时间的增加而增加,直到服役时间到达60天后趋于稳定。实验测试的热导率演变机制与有限元模拟一致。Gd2O3和Yb2O3的加入可以降低热导率,并且提高热障涂层的抗烧结性。(5)利用纳米压痕方法,研究多尺度孔隙结构热障涂层高温下长期服役后力学性能的演变机制。研究发现随着造孔剂含量的增加,硬度、弹性模量呈现下降趋势,断裂韧性呈现上升趋势。随着高温服役时间的延长,硬度、弹性模量增大,断裂韧性下降。当服役时间到达60天后趋于稳定。
其他文献
在钙钛矿固溶体中,随着成分改变,经常会引起对称性的改变,两种不同对称性的边界可称之为准同型相界(MPB)。准同型相界附近,可能存在不同对称性结构的共存,电学性能可发生剧烈变化。最近,双晶位无序铁电弛豫体系(Bi,Pb)(Ti,B)O3(B=Mg2+,Ni2+,Zn2+,Zr4+,Hf4+,Nb4+…)作为低铅压电材料引起人们广泛关注。其中BZN–PT,BNH–PT和BF–45PT:La三种体系,表
新时期军事战争模式对陆军装甲车辆的机动性要求越来越高,而气缸盖作为影响装甲柴油发动机性能的关键零部件之一,其重量和性能是制约发动机性能的关键因素。目前,装甲车辆的气缸盖以铝合金和铸铁材料为主。其中,铝合金的承载能力相对较弱且服役温度不高,主要适合低功率密度的柴油发动机;铸铁承载能力强,但其密度较高,难以减重,无法满足新时期装甲车辆的性能要求。因此,开展低密度、高性能的新型铁基合金的研究具有重要意义
本文以C5馏分、双环戊二烯(DCPD)和C9馏分为原料,采用两段热聚合成法进行共聚反应制备C5/DCPD/C9共聚石油树脂。首先以C5馏分为原料,在温度240℃、压力5.5MPa的条件下,热聚合反应6h,得到C5低聚物,然后再将C5低聚物、DCPD、C9馏分三者的混合物,在压力0.40MPa~0.55MPa、温度为250℃的条件下,反应3~8h,得到色号为3.0~4.0的浅色石油树脂。
采用助剂修饰合成金属有机骨架基化合物PVP-Ni-MOFs,经N2气氛退火制备了Ni/C-400催化剂。采用FT-IR、XRD、TEM、SEM、N2吸附-脱附等对催化剂进行结构与性能表征,考察了Ni/C-400催化C9石油树脂加氢反应中温度、H2压力以及时间对反应体系溴值的影响。结果表明:Ni/C-400具有大量介孔结构,助剂聚乙烯吡咯烷酮(PVP)促进了Ni在碳载体上的分散;在Ni/C-400用
以异戊烯、α-甲基苯乙烯、α-蒎烯等为主要原料,通过傅克反应合成了高品质的液体石油树脂。考察了反应温度、反应时间、原料配比等对液体石油树脂的影响。确定了聚合最佳工艺条件:m(异戊烯)∶m(α-蒎烯)∶m(抽余C5)∶m(α-甲基苯乙烯)=360∶72∶96∶72,进料阶段反应温度40℃,反应时间70 min,保温阶段反应温度50℃,反应时间80 min,成品树脂色度(YI)≤35,软化点0~15℃
石油化工产业是我国重点发展与关注的生产行业,是引领国家经济快速发展的先锋产业,目前,我国已经进入工业化大生产的发展环境中,化工产品需求量日益增加,乙烯的消耗量有目共睹,已引起国内外学者争相研究。相关研究者对碳九综合利用的生产工艺不断进行剖析与研究,并在相关研究基础上,生产碳九石油树脂,目前已得到众多领域广泛应用。本文针对碳九石油树脂生产过程中的副产物溶剂油的特性,设计了一种碳九石油树脂溶剂油脱氟工
能源问题一直是社会发展的热点和焦点,随着化石燃料的消耗日益加剧。二次电池作为储能器件得到了飞速的发展。其中,Li-S电池因其出色的能量密度,可以在传统二次电池无法满足的储能方面得到广泛应用。然而,由于硫/锂化硫的绝缘性、多硫化物严重的“穿梭效应”和充放电反应过程中动力学缓慢等诸多问题,使得Li-S电池的容量以及长寿命循环方面受到了极大影响。提高Li-S电池性能的有效策略之一是通过在正极一侧插入高导
模具是机械制造领域不可或缺的组成部分,其中最主要的是Cr12Mo V模具钢。但因其硬度较低,造成磨损量增加和使用寿命降低。单一的成分调配和现有的膜层体系难以有效解决Cr12Mo V模具钢硬度不足的问题。高熵合金薄膜凭借其优异的综合性能获得了国内外学者的广泛关注。本论文设计了一种全新的AlTiZrVHf高熵合金并通过反应性磁控溅射技术制备了AlTiZrVHf薄膜,采用正交实验获得了(AlTiZrVH
铸造Al-Si系合金由于其优异的综合力学性能,已成为活塞制备的首选合金,而随着工业上对活塞性能需求的愈加严苛,对Al-Si系活塞合金的性能要求也随之升高,因此开发新型高强轻量化活塞合金已成为Al-Si系活塞合金的研究热点。本文以Al-12Si-4Cu-2.7Ni-1Mg活塞合金为基础,通过添加不同量的Sc元素进行活塞合金的微合金化,实现合金微观组织形貌的调控及优化,从而达到提高活塞合金综合力学性能
高熵合金具备的高硬高强度、高抗回火性、高抗氧化性和高耐磨性等特性,完美契合了当今社会对金属材料性能的要求,在核、涡轮机和航空航天工业等领域有良好的应用前景,然而高熵合金在制备和加工过程中不可避免的会产生空位、裂纹等缺陷,这些缺陷极大地制约了高熵合金的工业化应用。本文基于分子动力学的方法,在纳米尺度下揭示材料裂纹扩展过程中的缺陷演化行为及变形机制,将Al0.1CoCrFeNi高熵合金体系的裂纹分为了