论文部分内容阅读
研究背景和目的:乳腺癌是严重威胁女性健康的恶性肿瘤之一。目前,临床上乳腺癌的主要治疗手段包括手术治疗、化疗、放疗、内分泌治疗和免疫治疗等。然而,传统疗法都存在各自的缺陷,急需开发新的治疗手段治疗乳腺癌。光学疗法是一种新兴的肿瘤治疗方法,包括光热治疗(PTT)和光动力治疗(PDT)两种形式。PTT是利用光敏剂将近红外激光的光能转换成热能,造成肿瘤细胞热死亡的一种治疗方法。PDT是光敏剂在近红外激光的作用下,与肿瘤部位的氧气相互作用,产生大量活性氧自由基,通过直接杀伤肿瘤细胞和间接作用于肿瘤微环境来治疗肿瘤的方法。光学疗法具有易聚焦、微创及不易产生耐药等优势,在肿瘤治疗中表现出较好的应用前景。本文以红细胞为载体材料,设计并构建了一种结构简单并高效整合PTT/PDT与化疗的仿生纳米红细胞治疗体系(DIRAs)。该治疗体系是利用光敏剂吲哚菁绿(ICG)和化疗药物阿霉素(DOX)在气体发生剂碳酸氢氨(ABC)溶液中通过疏水与π-π共轭相互作用形成纳米复合物,然后利用红细胞(RBCs)对该纳米复合物进行包裹,同时实现纳米化制备而得。本课题还系统研究了纳米化红细胞对ICG、DOX和ABC的高效共载、热响应性药物爆破释放、血红蛋白(Hb)携氧增效光动力作用,以及联合PTT/PDT和化疗治疗乳腺癌的疗效及其相关机制。实验方法:1.在ABC溶液中与探头超声下,ICG与DOX通过分子间相互作用形成纳米复合物(ICG/DOX),而后采用挤出法实现RBCs对ICG/DOX的包覆,制备纳米红细胞治疗体系DIRAs。运用透射电子显微镜(TEM)和动态光散射(DLS)考察DIRAs的形貌、粒径、Zeta电位及其体外稳定性;采用全蛋白图谱分析技术对其蛋白组分特征进行考察;利用血红蛋白测定仪检测DIRAs携载Hb的情况。2.采用红外热成像照相机监测激光照射过程中DIRAs溶液温度的变化;采用热重分析和凝胶实验考察ABC的热响应性产气性能;利用TEM观察激光照射后DIRAs形貌的变化;运用动态透析法和超高效液相色谱法对DIRAs的热响应性药物释放行为进行监测。3.采用紫外分光光谱法检测激光照射过程中Hb分子中的氧气消耗情况;以单线态氧荧光探针SOSG检测DIRAs溶液中活性氧的生成情况。4.运用CCK-8法评价不同给药治疗对乳腺癌4T1细胞的杀伤作用和长效抑制效应;利用激光共聚焦显微镜观察不同给药组细胞内的药物分布、活性氧生成、线粒体损伤及细胞色素C(Cyt c)的亚细胞定位情况;采用流式细胞技术定量检测不同给药组细胞的药物摄取、活性氧产生以及细胞凋亡情况;采用死活细胞染色法观察不同给药治疗对4T1细胞的杀伤作用;采用Western blotting实验检测线粒体凋亡通路中关键蛋白的表达变化。5.建立乳腺癌皮下移植瘤模型,通过肿瘤局部注射途径给药,而后利用小动物活体成像技术考察DIRAs在肿瘤病灶的滞留情况;给药1 h后对肿瘤进行激光照射,期间利用红外热成像照相机监测肿瘤部位的温度变化;治疗后取小鼠肿瘤制作冰冻切片,并采用SOSG荧光探针法检测肿瘤组织中活性氧的产生情况。6.对荷瘤小鼠随机分组并进行不同给药治疗,期间测量肿瘤尺寸,绘制肿瘤生长曲线,同时观察肿瘤的复发情况;治疗后对小鼠体内主要脏器与肿瘤进行苏木精-伊红(H&E)染色与组织病理学分析,考察各种治疗对肿瘤的杀伤作用以及对正常组织的损伤情况;采用生物发光和小动物活体成像技术考察各治疗组小鼠体内乳腺癌肺转移的情况。7.以健康小鼠为研究对象,采用静脉注射途径给药,然后利用血液分析仪对小鼠血液进行血常规分析;采用流式细胞技术检测小鼠脾脏中骨髓来源的抑制性细胞(myeloid-derived suppressor cells,MDSCs)的比例;采用酶联免疫法(ELISA)对各给药组小鼠肝肾功能指标进行定量分析;对小鼠主要脏器进行H&E染色与组织病理学分析,考察脏器的损伤情况。研究结果:1.RBCs包裹ICG/DOX制备得到的纳米红细胞治疗体系DIRAs呈规则的球状形貌,粒径为97.9±21.3 nm,分散指数为0.203,Zeta电位为-21.6 mV。DIRAs表现出良好的体外稳定性,具有RBCs细胞膜和细胞质的特征蛋白组分,Hb的保留率约为52.7%。2.DIRAs保持了ICG良好的光热转化效率,激光照射过程中其溶液体系的温度高达60℃;DIRAs的光热效应能够触发ABC的热响应性分解,在其凝胶体系中观察到明显的气泡产生。TEM观察发现,激光照射后DIRAs的纳米结构发生破裂,并且部分药物从内部释出。激光照射下,DIRAs具有显著的热响应性爆破释药性能,并且药物的体外释放表现出一定的pH敏感性。3.DIRAs中的Hb以含氧形式存在,其携载的氧气可被ICG介导的PDT作用消耗,能够显著增加其溶液体系中活性氧的产量。4.在乳腺癌4T1细胞中,DIRAs表现出较强的入胞能力,高效携载DOX进入细胞核,并且激光照射能够进一步促进其入胞,DOX的入胞率提高了约30%。结合激光照射,DIRAs表现出极强的细胞毒性,显著诱导了4T1细胞的凋亡。与游离ICG比较,DIRAs不仅高效杀伤了激光照射区域内的细胞,还对照射区域外的细胞产生了明显的毒性。5.DIRAs结合激光照射促进了4T1细胞内ROS的产生,进一步造成线粒体损伤以及Cyt c由线粒体向细胞质的释放,同时线粒体凋亡通路下游关键蛋白Caspase 9/3被显著激活,证明DIRAs介导的PDT效应能够通过激活线粒体凋亡通路诱导细胞凋亡。6.在荷瘤小鼠体内,DIRAs明显延长了ICG与DOX在肿瘤部位的滞留时间,表现出显著优于游离ICG的PTT/PDT效应,促进了肿瘤局部温度升高,并增加了肿瘤组织中ROS的产量。7.DIRAs结合激光照射能够实现小鼠体内肿瘤的完全消融,造成肿瘤组织中大量细胞坏死,并在较长时间内抑制了肿瘤的复发和转移,进而延长了荷瘤小鼠的生存期。8.健康小鼠经不同给药治疗后,血常规各项参数、脾脏中MDSCs和肝肾功能各项指标均与阴性对照组无明显差异,组织切片染色未观察到各脏器出现病理学损伤,说明该纳米红细胞治疗体系具有较高的生物安全性。结论:本文成功制备了一种具有热响应性药物控制释放能力和携氧增效PDT作用的纳米红细胞治疗体系DIRAs,实现了PTT/PDT和化疗的有效联合及其对乳腺癌协同增效的治疗作用。体内外实验数据表明DIRAs有效阻止乳腺癌复发和转移,并具有良好的生物相容性,为临床乳腺癌开发新的治疗手段提供了理论依据和数据支持。