M公司装配线平衡与库位分配联合优化研究

来源 :中国矿业大学 | 被引量 : 0次 | 上传用户:whenhm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
Long-term operational stability remains the primary concern for perovskite solar cells.Consequently,there is a quest for searching for new compositions that enable stable and efficient perovskites.We
钙钛矿太阳能电池近年来取得突破性进展,是重要的下一代光伏技术之一.其中,混合卤素钙钛矿是钙钛矿家族中最高效的光伏材料之一.然而,对不同位点的元素或离子进行替换掺杂,容易造成混合钙钛矿各组分之间的相分离和偏析,引起材料的不均一性和器件性能的宽分布.组分不均一会导致局部晶格失配,从而产生残余应变,因此应变是表征器件不均一性的有效手段.但对钙钛矿残余应变的性质及其对光伏器件性能的影响至今仍然缺乏深入认识
Long-term stability is an essential requirement for perovskite solar cells (PSCs) to be commercially viable.Heterojunctions built by low-dimensional and three-dimensional perovskites (1D/3D or 2D/3D)
目前,纳米厚度的二维钙钛矿单晶主要通过气相蒸发法、机械剥离法合成,但这些方法合成的或是晶体尺寸仅为微米级,或是需要先合成大晶体再进行剥离,制备过程十分复杂[1,2].而空间限制法和表面张力法,制备的晶体厚度大多数在数十微米-数百微米的数量级上,很难得到厚度为纳米级的单晶[3].其中少数的几个纳米级的晶体的工作,其晶体横向的尺寸也仅为数十微米.较小的晶体尺寸给后续的测试和应用带来了困难[4].我们通
会议
近年来,由于其出色的热稳定性和低制备成本,基于碳电极的CsPbI2Br无机钙钛矿太阳能电池逐渐引起科研工作者的关注.遗憾地是,其光电转换效率明显低于有机-无机杂化钙钛矿太阳能电池,这主要归因于CsPbI2Br/碳电极界面处严重的电荷复合和不良的空穴提取.在这项工作中,溶液处理、无掺杂剂的酞菁铜(CuPc)衍生物空穴传输材料用来修饰CsPbI2Br/碳电极的界面,以抑制电荷复合和促进空穴提取.在其最
有机无机杂化钙钛矿太阳能电池光电效率已经达到25.5%,十分接近理论极限.但普遍存在迟滞现象,阻碍了钙钛矿太阳能电池的商业开发和应用.我们通过沉积两层电子传输层材料调节钙钛矿太阳能电池的能级匹配,减少了电压损耗,在消除钙钛矿太阳能电池的迟滞现象的同时,提高了开路电压,从而提升了器件的光电效率.如图1所示,单独使用TiO2作为电子传输层的器件具有很大的迟滞现象,单独使用SnO2电子传输层的器件虽然迟
空穴传输材料在钙钛矿型太阳能电池中起着重要的作用.目前使用最多的是spiro-OMeTAD.然而,没有掺杂的spiro-OMeTAD具有较低的电导率和空穴迁移率.因此,提高空穴传输层的迁移率和电导率已成为一个关键问题.在这里,我们介绍了一种掺杂剂,氯化亚砜,以便氧化空穴传输材料生成更多的spiro-OMeTAD+.在相同条件下,优化后的氯化亚砜器件最高的功率转换效率为20.76%,而原始器件仅为1
学位
Hole transporting materials (HTMs) play an unparalleled role in heightening the stability and photovoltaic performance of perovskite solar cells (PSCs).The organic small molecule spiro-OMeTAD is frequ