论文部分内容阅读
荧光探针分析法,主要通过与待分析物的化学反应来改变其荧光颜色或荧光强度来定性或定量分析特定目标。它具有灵敏度高,选择性好,反应时间短,操作快等优点,使它在生命科学等领域的检测中具有越来越重要的应用。与单光子荧光探针相比,由于双光子荧光探针在可见光-近红外范围(约700-1100nm)内被激发,可以克服单光子荧光技术的许多问题,如较短的激发波长(350-550 nm)导致光漂白,对样品的光损伤比较大,以及生物样品在此波段中的自发光的干扰等问题,使得双光子荧光探针成为当今前沿研究领域的热门课题。因此,设计一种具有双光子性质的荧光探针用于检测生物体内的分子、离子具有重要意义。本学位论文分别选用萘酰亚胺和香豆素衍生物作为荧光团,通过修饰,设计合成了三种荧光探针,用于二氧化硫(SO2)及其衍生物亚硫酸氢钠盐(NaHSO3)的检测。首先,基于1,8-萘酰亚胺荧光团以醛基C=O为SO2衍生物的反应位点,设计探针Na-SO2-Lyso。此外,将吗啉单元作为靶向溶酶体的基团连接到探针中,实现探针对溶酶体中SO2的检测。探针Na-SO2-Lyso由于C=N异构化作用引起激发态的非辐射衰变过程,初始荧光较弱。与HSO3-作用后,生成强氢键给体-OH基团。由于新形成的分子内O-H···N=C氢键有效地抑制了探针的C=N异构化,因此探针荧光大大增强,实现了对NaHSO3的有效检测。在生物成像实验中,探针能够在单光子与双光子的模式下在HeLa细胞和斑马鱼中对NaHSO3进行检测。其次,以香豆素和苯并吡喃盐为荧光团,设计了C=C键为亚硫酸氢盐或亚硫酸盐反应位点的近红外双光子荧光探针NIR-SO2-TP。探针本身的激发波长在近红外波段的650 nm处,发射波长在790-900 nm范围内。当加入亚硫酸氢盐后,亚硫酸氢盐通过亲核加成进攻探针NIR-SO2-TP的C=C不饱和双键,大共轭体系被切断,导致探针的近红外发射消失,只释放出香豆素的黄绿色荧光,从而达到有效识别SO2的目的。此外,该探针在生物成像实验中,成功地在近红外和双光子的双模式下检测到细胞、组织、斑马鱼及小鼠中的NaHSO3。最后,开发了一种基于二氟硼氧基香豆素为荧光团,以醛基和C=C不饱和双键为反应位点的近红外双光子反应型探针CoB-SO2。探针本身发射红色荧光,加入HSO3-后,同时进攻反应位点C=C不饱和双键以及末端的醛基,导致探针的近红外发射淬灭,释放香豆素基团的黄绿色荧光,从而能够检测HSO3-。另外,该探针能够快速响应二氧化硫,同时对二氧化硫具有良好的选择性并且该探针对细胞与斑马鱼中的SO2进行了成像。