论文部分内容阅读
本论文采用射频反应磁控溅射方法制备了氧化铬硬质薄膜,利用X射线、X光电子能谱(XPS)、扫描电镜(SEM)、原子力显微镜(AFM)、透射电镜(TEM)研究了氧化铬薄膜微观结构及生长机理,并综合利用纳米力学测试系统、UMT显微力学测试系统研究了薄膜的微观结构与力学性能之间的相关性。本论文所获得的研究成果如下:(1)通过射频反应磁控溅射技术制备出均匀、致密的氧化铬薄膜,并且通过添加铬金属过渡层有效降低了薄膜的内应力,从而制备出厚度10μm以上的单层氧化铬薄膜。(2)薄膜的微观结构依赖于溅射过程的沉积参数。当氧气流量较低时薄膜呈非晶态;随着氧气流量的增加,薄膜的结构由非晶态向柱状结构转化,柱状晶的尺寸随薄膜厚度的增加而增加;同时随氧气流量的增加其力学性能也随之变化,硬度、弹性模量、耐磨性提高,但是薄膜与基体的粘结强度降低。(3)无论在薄膜与过渡层,还是在过渡层与基体之间都存在一层50-120 nm厚的非晶层。研究发现,非晶层的存在对薄膜微观结构和力学性能产生显著的影响,非晶层能够抑制薄膜柱状晶的长大,从而改善表面的粗糙度,提高薄膜的力学性能。在钢基体与铬过渡层的界面处探测到Fe-Cr中间相的存在。(4)对完全非晶态的薄膜进行热处理时发现,在480℃左右薄膜发生非晶态向晶态的相变,在高于相变温度进行热处理,薄膜的结构发生变化并使薄膜的硬度、弹性模量及耐磨性提高,但随着保温时间的延长,薄膜晶粒尺寸增大,其硬度有所下降。(5)与单层氧化铬薄膜相比,在相同沉积条件下制备的多层Cr/Cr2O3薄膜的力学性能有所不同,主要体现在硬度、弹性模量的提高以及膜基粘结强度、断裂韧性的改善。(6)在微观磨损条件下水环境中薄膜的摩擦系数较空气中有所提高,耐磨性下降明显。当水分子到达界面参与界面反应时,薄膜与基体的粘结强度显著降低。