【摘 要】
:
肺癌是最常见的癌症之一,它的发病率和死亡率增长很快。针对不同肺癌亚型,其治疗方案区别很大,如鳞癌以放疗为主;而腺癌则以化疗为主。当前,肺癌分型主要依靠人工诊断,导致效率低,精度差。本文使用病人的CT和PET图像作为数据集,利用深度学习方法训练模型完成对肺癌类型的自动划分。论文中使用Res Net50作为特征提取网络,分别实现只使用CT图像或PET图像以及共同使用CT和PET图像作为输入进行分类,观
【基金项目】
:
国家自然科学基金《基于深度学习的海量影像文本报告与医学图像复合信息挖掘》项目;
论文部分内容阅读
肺癌是最常见的癌症之一,它的发病率和死亡率增长很快。针对不同肺癌亚型,其治疗方案区别很大,如鳞癌以放疗为主;而腺癌则以化疗为主。当前,肺癌分型主要依靠人工诊断,导致效率低,精度差。本文使用病人的CT和PET图像作为数据集,利用深度学习方法训练模型完成对肺癌类型的自动划分。论文中使用Res Net50作为特征提取网络,分别实现只使用CT图像或PET图像以及共同使用CT和PET图像作为输入进行分类,观察结果,发现CT和PET共同使用效果更好。以CT和PET共同使用的模型作为分类基准模型。为缓解现有肺癌数据集类别极度不平衡的问题,我们提出多种缓解方法。具体可分为四个方向,分别是基于重采样的方法、基于损失函数优化的方法、基于混合策略的方法和对网络结构的优化探索。我们对这些方法进行了完善的实验。实验结果表明,对于多种缓解类别不平衡方法,除欠采样方法外,其它均能有效提高少数类的分类精度,其中结合Remix混合策略和三维卷积神经网络的模型表现最好,在各类别的判别精度上均要高于医生人工诊断的精度,同时有效缓解了类别不平衡问题。考虑到患腺癌和鳞癌的人占肺癌患者的80%以上,如果计算机能正确的区分腺癌和鳞癌,就可以给医生带来很大的帮助。所以我们构建了区分腺癌和鳞癌的二分类模型,并使用ROC曲线做评估,实验结果表明,人工提取特征的Xgboost模型和自动提取特征的三维卷积神经网络模型均超越医生人工诊断精度。
其他文献
随着互联网的不断发展,网民的数量逐渐增多,网络信息也呈爆炸式增长。这些信息基于用户的真实体验,蕴含着巨大的价值。目前可以使用情感分析技术挖掘其中的情感与观点,然而由于许多时候人们不直接通过情感词,而是选择“隐晦”地表达其真正想说的意思。隐式情感分析可以较好地处理这类问题。由于这类问题有一定的占比、不容忽视,且目前受到的关注较少,因此本文聚焦于隐式情感分析技术,对其中的各种任务做出研究。本文的主要研
传统的辅助维修主要靠维修人员的经验和极其简单的工具进行维修,在时间、设备和环境等方面受到极大限制,这使得维修工作变得难度大、效率低。增强现实(Augmented Reality,AR)的蓬勃发展,为维修工作提供了新的解决方案,如果能够在维修工作中利用移动设备和AR技术来辅助维修,将在很大程度上提高维修效率。同时边缘计算的发展,使得网络边缘的算力大大加强,利用边端协同策略提高辅助维修系统的性能也有了
代码克隆是具有相似语法或语义的重复代码片段。代码克隆检测在软件维护、代码重构以及漏洞检测等任务中起着重要的作用。为了节约大量的人力、物力,自动检测出代码库中的代码克隆是软件工程领域最重要的问题之一。近年来,利用机器学习技术分析源代码已经引起了人们的广泛关注,不少研究人员采用机器学习技术进行代码克隆检测。较早的研究工作主要使用信息检索方法,这丢失了大量的重要语义信息。最近的研究表明,借助于源代码的中
随着数字经济的发展,数字市场反垄断面临着市场支配地位认定困难、相关市场范围界定困难、数字经营者集中审查困难等问题,作为反垄断的辅助性法律如《电子商务法》《反不正当竞争法》《价格法》等在应对数字反垄断领域也存在法律适用困境。就国外数字反垄断治理的最新进展看,必要设施规则、优势地位滥用规则、跨市场竞争影响滥用规则各有其适用领域及条件,在应对数字市场反垄断治理中也起到一定的作用,但在规制方式上与传统的反
命名实体识别是指从自然语言文本中识别有特定意义的实体,例如人名、地名、组织机构名等。随着互联网的飞速发展,命名实体识别的需求不仅局限于传统的三类实体类型,进一步拓展到了对于各个专业领域命名实体的识别。在大规模数据上,基于深度学习的方法在命名实体识别任务上能够得到较好的效果。但是由于标注资源的限制,在目标领域中常常无法获得大规模的有标注数据,直接应用深度学习的方法无法获得比较好的效果。因此本文研究跨
意图识别任务旨在确定一句话的意图,即通过分类模型将问题分类到事先定义的问答系统中各种可能的意图类别当中,可以被认定为分类任务,是自然语言理解中的关键技术。意图识别任务较早就被提出,但由于缺乏标注数据无法在现实场景中得以应用,尤其是特定领域的意图识别任务当中数据匮乏更为严重。而深度学习在文本分类等多个自然语言处理任务中获得了很好的表现,但是这种方法需要大量的标注数据。本文围绕意图识别的研究现状和当前
在计算机视觉领域,图像分类任务的待分类样本通常来自不同的基础类别(如车、狗、鸟、树等),然而在很多实际应用场景下需要对这些基础类别做进一步分类,这种分类的粒度相较于一般分类任务更为细致,所以称其为细粒度图像分类。因为细粒度图像分类任务区分的是同一基础类别下的子类,子类之间的差异性比与基础类别之间的差异性小很多,且往往体现在细小的局部,这成为细粒度分类任务的难点所在,同时图像噪声、拍摄角度和光照等因
跨语言词嵌入指不同语种的单词对应的表示处于相同的向量空间之中,从而可以方便地度量不同语种的词之间的相似程度,无监督跨语言词表示学习旨在不借助任何的外界跨语言信息来进行跨语言词表示的学习。现有的无监督跨语言词表示学习虽然取得了一定的成果,但仍然存在着不足之处。缺点之一便是自学习步骤中的双语翻译词典获取方法较为简单,不能为后续迭代步骤提供高置信度的双语关联信息,影响了自学习过程的学习效果,并对最终获得