【摘 要】
:
在城市交通轨道运输中,不锈钢客车具有耐蚀性强、节约维修成本、减重降耗、环境污染小、造型美观等优点,符合轨道车辆轻量化和高档化发展的趋势,是今后城轨客车的主要发展方向。与传统制造相比,增材制造(Additive Manufacturing,AM)的不锈钢具有良好精度与力学性能,在交通运输中得到广泛应用。然而,选区激光熔化技术(Selective Laser Melting,SLM)作为一种常用的金属
论文部分内容阅读
在城市交通轨道运输中,不锈钢客车具有耐蚀性强、节约维修成本、减重降耗、环境污染小、造型美观等优点,符合轨道车辆轻量化和高档化发展的趋势,是今后城轨客车的主要发展方向。与传统制造相比,增材制造(Additive Manufacturing,AM)的不锈钢具有良好精度与力学性能,在交通运输中得到广泛应用。然而,选区激光熔化技术(Selective Laser Melting,SLM)作为一种常用的金属增材制造技术,其过程是一个复杂的冶金过程,在成形零件中常会出现气孔、孔隙及微观裂纹等组织缺陷,降低了材料的使用寿命。鉴于此,本文将以SLM制备的316L不锈钢为研究对象,重点研究不同工艺参数下打印件在不同方向上可能存在的典型显微组织特征、缺陷形态及形成原因,以及各类缺陷对其性能的影响。这些研究成果可为SLM成形316L不锈钢的工艺优化及进一步改善产品性能提供理论基础,主要研究内容如下:(1)通过正交实验研究工艺参数对打印件质量的影响,结果表明,同一套打印参数制备的316L不锈钢方块试样,其顶面粗糙度大于侧面的粗糙度。工艺参数对致密度的影响程度由大到小为:扫描间距、激光功率、扫描速度和旋转角度。四个工艺参数对打印件致密度的影响可统一为一个参数:能量密度。它存在一个临界值32.10 J/mm~3,低于该值时,致密度显著下降(<95%),高于该值,致密度保持较高水平,但过高时(122J/mm~3~150 J/mm~3),致密度又会稍有下降。最高的致密度为98.5%,对应的工艺参数为:激光功率P=260 W,扫描速度V=1700 mm/s,扫描间距D=0.05 mm,旋转角度θ=67°,层厚T=0.04 mm。(2)SLM制备不锈钢中的缺陷类型、尺寸、位置主要受能量密度的影响,能量密度越高,缺陷主要以小尺寸的圆形孔洞为主,随着能量密度的下降,组织缺陷逐渐由位于溶池边界的中等尺寸的三角形孔洞向大尺寸异形及四方形孔洞演变。(3)SLM制备不锈钢的硬度与致密度呈正向相关,致密度越高,硬度越大,反之则越小。当打印件的致密度高于一定值时,其硬度要高于相应的锻压件。耐蚀性方面,致密度越高,耐蚀性能越好。致密度为98.5%打印件的耐蚀性优于相应的锻压件,而锻压件的耐蚀性又优于较低致密度(75.79%)的打印件。对比同一个打印件水平面XOY方向与侧面YOZ的耐蚀性,水平面XOY方向的耐蚀性优于侧面YOZ方向的耐蚀性。
其他文献
随着电动汽车产业的蓬勃发展,消费者对电动汽车的充电性能提出了更高的要求,但低温环境下动力电池充电效率下降、充电量少,因此电动汽车动力电池在低温环境下的充电控制策略愈发受到研究人员的重视。本课题选取18650锂离子电池作为研究对象,采用实验建模和理论分析相结合的技术路线,对车用动力锂离子电池低温快速充电控制策略进行研究。首先,分析锂离子电池的工作原理,对锂离子电池进行低温充电实验,分析电池充电过程中
超薄平板热管作为一种高效的传热元件,能有效解决受限空间内高热流密度设备的散热问题,具有广阔的应用前景。随着超薄平板热管厚度不断减薄,其传热性能恶化,为满足高热流密度设备的散热需求,开展超薄平板热管传热传质特性及强化传热研究具有重要意义。本文从理论分析、实验测试、可视化研究等方面对超薄平板热管传热传质特性进行研究,优化超薄平板热管结构尺寸设计,并将其成功应用于质子交换膜燃料电池热管理。基于导热和工质
电动汽车是绿色交通和智慧城市的有效途径,电动汽车的安全高效依赖于主要动力部件(动力电池、电机、电机控制器)的热安全性。高集成度、高能效的整车协同热管理是制约电动汽车发展的难点之一,也是国际研究热点。另一方面,电动汽车空调系统承担着向电动汽车输出冷量或热量的任务,是整车热管理系统的热动力核心部件,电动汽车热泵空调系统由于其优越的能效特性,成为下一代电动汽车空调系统的首选。如何改善热泵系统的低温制热性
作为发动机的七大板块之一,润滑系统扮演着很重要的角色,除了减小器件之间的磨损以外,它还具有清洁、冷却、密封、防锈等功能,可确保发动机的正常平稳运行。但随使用时间的推移,润滑油中会掺入各种各样的杂质,导致润滑性能逐渐降低。如果未能及时对润滑油进行更换,器件之间会产生磨损、胶合等情况,甚至产生较危险的事故。而油液的粘度可以很好地衡量润滑油的润滑性能,所以对润滑油的粘度检测研究是很有必要的。原有的测量粘
A319合金是一种高Cu含量的铸造铝硅合金,被广泛应用于汽车零件中。作为A319合金中最主要的金属间化合物,Al2Cu相特征的变化对合金的力学性能有显著影响。虽然国内外对铸造铝合金中Al2Cu相等金属间化合物进行了许多研究,但Al2Cu相的三维特征研究非常有限,空间分布均匀性等问题尚未见研究报道。此外,Al2Cu相对A319合金裂纹起源与扩展的三维原位观察与分析的研究很少。本文探讨了Al2Cu相与
在交通运输等领域中,使用轻量化合金替代传统的钢铁结构是实现节能减排的有效途径。但相比较不锈钢等传统材料,镁、铝等轻质合金更容易受到腐蚀的破坏和影响,造成安全隐患和经济损失。在轻质合金表面构建腐蚀防护涂层能够有效延缓合金的腐蚀,而在涂层中掺杂微纳片层材料则有助于进一步提升其防腐耐磨等防护性能,延长其服役寿命,提高材料安全性。本研究主要围绕绢云母这种天然二维片层材料,在经过酸化和PEI改性处理后,分别
高压共轨喷油器作为提升发动机燃烧效率的一种重要技术,因此建立相应的柱塞动力学理论、喷油理论和柱塞副泄漏理论有重要意义。针对现有研究基于一维油膜流动和单一柱塞姿态以及柱塞动力学和喷油过程独立研究建立的理论。本文具体研究如下:首先,根据喷油器的设计原理和集中容积法,并考虑喷油中的空化现象,建立柱塞动力学和喷油理论结合的数学模型,包括腔室体油压变化方程、柱塞受力平衡方程和喷油方程。得出各腔室油压变化、柱
空区稳定直接关系矿山生产安全。房柱法遗留空区承载结构主要为点状矿柱-顶板承载系统。由于地下岩体结构复杂,延伸开采过程中会形成非重叠矿柱支撑的空区。非重叠矿柱现象会增大空区承载结构荷载,导致空区承载结构岩体超过其极限强度,引发顶板冒落、矿柱滑移等事故,造成重大人员和设备损失。因此,开展非重叠矿柱支撑的延伸开采空区承载结构优化研究,对保证矿山安全生产具有十分重要的意义。论文以某地下石灰石矿山延伸开采空
建筑施工项目中,交叉作业随处可见。受限于作业空间、工期压力和成本效益等问题,交叉作业已经成为不可避免的一种作业方式。然而,以往的研究聚焦于整体施工流程中的风险辨识与评估,或是对存在冲突的作业进行调度优化的方式探索,对交叉作业的风险定量评估及管控措施分析尚缺乏系统性研究。在提高生产效率和整合作业资源的同时,交叉作业潜在的安全性问题也不容忽视。本文旨在综合运用关联规则挖掘(Association Ru
木制建筑自古以来便是人类生活最为常见的建筑之一,近年来随着低碳、环保、可持续发展等理念的深入人心,木制建筑越来越受人们的青睐。然而,与此同时,我们发现木制建筑火灾事故却层出不穷,危害极大。因此,降低木制建筑火灾事故发生概率及危害程度具有重要意义。解决木制建筑火灾的难点主要体现在两个方面:(1)木材易燃且燃烧时火焰蔓延速度快,潜在火灾隐患大;(2)现有的建筑火灾预警技术通常在火灾发生后才运作,预警响