论文部分内容阅读
由于纳米TiO2粉体粒径小、比表面大、表面能高以及特殊的表面结构,使其生长不易控制,且容易团聚,在水相或其他介质中分散不稳定。同时,一般制备的TiO2需要采用300℃以上的高温处理,才能获得结晶良好的粉体或薄膜,而这对于柔性纺织品而言是无法承受的。为了控制纳米TiO2的生长,使其能均匀分散,不易团聚,且使纳米TiO2应用于柔性纺织品时无需高温处理,也能获得结晶良好的粉体或薄膜,并能在纺织品上实现纳米粒子与纤维的坚牢结合,本文对纳米TiO2的低温制备和结晶、热晶化处理方式、掺杂改性及其在纺织品上复合多功能整理工艺、光催化性能评价方法等方面进行较深入的研究。主要研究内容和创新性成果如下一、纳米TiO2水溶胶的低温制备与结晶方式研究利用溶胶-凝胶法在过量水体系条件下低温制备了锐钛矿型TiO2水溶胶,并创新性地应用汽蒸热晶化处理方式对TiO2溶胶进行低温结晶,获得了晶型完整、高结晶度和高催化活性的纳米TiO2粉体或薄膜。同时分析和探讨了水量、pH值、反应物的滴加顺序和热晶化方式等对纳米TiO2低温结晶的影响。结果表明:当钛酸四丁酯与水的摩尔比超过1:100,在100~120℃水汽蒸体系中处理TiO2溶胶后,能使钛酸四丁酯水解得更彻底,所制得的粉体晶型更完善,结晶度高,粒径小且光催化性能好。这种低温汽蒸热晶化处理的方法无须经过高温烧结,可应用于不耐高温的纺织材料上,从而拓宽了纳米TiO2的应用领域。二、掺杂金属或非金属离子与纳米TiO2水溶胶的协同效应通过掺杂金属和非金属离子到低温制备的纳米TiO2的晶格中或负载到TiO2表面上,可在TiO2中引入缺陷或改变结晶度,使掺杂后的TiO2禁带宽度变窄,影响光生电子与光生空穴的复合,并在可见光条件下也可激发其产生光催化能力,拓宽TiO2的光响应范围。以铁、银、氮和碳等为掺杂元素,通过溶胶-凝胶一步法直接掺杂离子制备掺杂纳米TiO2,并利用它们之间的协同效应来提高TiO2的光催化活性。与未掺杂的TiO2相比,掺杂TiO2在可见光下对亚甲基蓝有很好的降解效果,且掺杂TiO2的光催化活性主要取决于掺杂离子的特性和浓度。将掺杂后的纳米TiO2处理到织物上,可赋予其较好的抗紫外线和抗菌效果。三、纳米TiO2/ZnO复合体系的制备及对其光催化性能的影响利用纳米ZnO对纳米TiO2表面进行修饰,采用直接混合法和分步沉淀法制备摩尔比为9:1的TiO2/ZnO复合粉体,比较不同方法制备的纳米复合物的结构与性能差异,分析其对紫外光、紫外-可见光及可见光下的光催化活性和自清洁性能的影响。在纳米TiO,中复合一定量的ZnO,可以使Zn2+作为电子接受体,加强了对电子的争夺,抑制了复合物表面电子-空穴对的复合,从而能导致复合物的表面产生更多的O2-和·OH,使其去除有机物的能力得到了明显的提高。研究结果显示:纳米TiO2/ZnO复合物紫外吸收边带发生了红移,且带隙能减少,使其在可见光下也可以被激发产生光催化活性。同时,利用TiO2/ZnO复合物对织物进行自清洁整理,可赋予织物在太阳光下也具有良好的光催化自清洁性能。四、低温制备的纳米TiO2生长控制及多功能整理工艺将低温制备的纳米TiO2溶胶应用于棉制品上,分析各种整理工艺对其生长控制和分散均匀性的影响,使处理后的棉织物能具有良好的抗紫外线、抗菌、自清洁和降解VOC等性能。研究表明:采用新型的汽蒸处理方式,在无分散剂存在的情况下,能控制TiO2的生长和水解反应,使其粒子在棉织物上均匀分散,不易团聚,结晶强度高于传统的焙烘和水热整理工艺,且与纤维结合有一定的坚牢度,对织物的理化性能也无明显的影响,并可防止纤维可能产生的裂化现象。同时,采用等离子技术对棉纤维表面进行预处理,使纤维表面能产生如C=O,-COOH, CH2-OH等功能性基团,从而可有效地改善纤维与整理剂TiO2的结合牢度,进一步提高织物的耐洗性,并赋予织物持久复合多功能性。本文还自主建立了在线检测VOC测试舱,研究利用特殊的传感器、基本评价装置、数据编程、在线检测仪表等组成的织物光催化性能在线VOC检测系统。这个系统可对经纳米TiO2处理后的功能棉织物降解总有机挥发物(TVOC)的性能进行实时监测,且数据可靠,周期短。与传统的采用气相色谱等检测方法相比,检测数据表现为连续测试与记录,速度是传统方法的十几倍,且能定性和定量地进行监测。