【摘 要】
:
低噪声放大器(Low Noise Amplifier,LNA)是射频前端的核心部件之一。作为射频接收链路的第一级放大电路,LNA的噪声系数、增益、线性度等性能直接影响着射频接收机的性能。在实际应用中,LNA从天线接收到的信号幅度具有较大的变化范围,为了提升接收机的动态范围以及降低功耗,可变增益低噪声放大器(Variable Gain Low Noise amplifier,VGLNA)受到青睐。基
论文部分内容阅读
低噪声放大器(Low Noise Amplifier,LNA)是射频前端的核心部件之一。作为射频接收链路的第一级放大电路,LNA的噪声系数、增益、线性度等性能直接影响着射频接收机的性能。在实际应用中,LNA从天线接收到的信号幅度具有较大的变化范围,为了提升接收机的动态范围以及降低功耗,可变增益低噪声放大器(Variable Gain Low Noise amplifier,VGLNA)受到青睐。基于第三代半导体Ga N的微波单片集成电路(MMIC)在通信和雷达等应用上具有突出的优势,成为近年来射频技术的研究热点。随着5G技术的发展,毫米波频段LNA受到关注。相对于CMOS工艺,采用Ga N工艺的毫米波VGLNA和宽带LNA鲜有报道。基于硅基Ga N工艺,本文开展了面向射频前端应用的毫米波VGLNA及覆盖Ka波段的宽带LNA MMIC研究,主要研究以下内容:1)本文设计了一款硅基Ga N VGLNA MMIC芯片并对其进行投片与实测。测试结果显示该VGLNA实现了工作频带为20~26GHz,增益可变范围为-5~20d B,带内增益波动小于2d B,高增益状态下频带内噪声系数最低为1.79d B,P1d B平均为15d Bm的性能。VGLNA应用于射频接收端的测试结果显示在频带内也有20d B平坦的增益,增益可调范围为0~20d B,高增益状态下噪声系数最小为1.75d B,验证了Ga N VGLNA在射频前端系统中的适用性;2)基于Ga N变压器反馈的宽带放大电路结构分析,本文设计了两款硅基Ga N宽带低噪声放大器MMIC,其版图仿真结果显示工作频段为22~43GHz,可完全覆盖Ka频段。两款LNA都可达到工作频段内噪声系数低于2d B,增益大于20d B,增益波动小于2d B的性能,验证了基于变压器宽带结构在Ga N MMIC电路设计中的可行性。因此,本项目的研究有助于提升毫米波收发机灵敏度和线性度,其成果可应用于移动通信、雷达、消费电子等领域。
其他文献
近年来,数据价值在各行业领域所发挥的作用与日俱增,构建与之相适应的数据安全保障体系显得尤为关键,即系统性降低数据安全风险,以合理的安全成本保障数字化转型,适应新的数据应用技术和应用场景等。在此背景下,仅依靠单一的数据安全技术或单一场景的数据安全能力,已不能满足当前多样化的数据安全需求,也不能满足《数据安全法》《个人信息保护法》中的合规要求。所以,构建数据安全保障体系应从认识论、方法论、综合技术能力
随着生活水平的提高,人们开始关注医院的绿地环境。同时,伴随康复花园理念的发展,人们逐渐意识到绿地对健康具有重要的康复作用。建设具有康复性效果的医院附属绿地具有非常重要的健康意义,但是目前医院附属绿地的设计建设现状如何?如何提升医院附属绿地的康复性效果?针对以上问题,本文以广州市为例进行研究。本文采用实地调查法对广州市16所综合性三甲医院的附属绿地建设现状进行研究,在此基础上选择广东省中医院大学城医
随着混合多端高压直流输电系统的发展、各种新能源(如风能、太阳能)并入电网,导致电力系统的谐波特性发生了深远的变化,谐波带宽大幅拓宽以及噪声干扰加剧,传统的电力谐波检测算法已经不再全面适用,这给电力谐波检测研究提出了新的挑战。谐波参数估计是谐波得到有效治理的前提,因此,研究新的适用于电力电子化电力系统的谐波检测算法具有十分重要的意义和价值。对此,本文综合考虑当前电力系统的谐波特性,对基于FFT的谐波
密码仍然是一种重要的身份验证技术。近年来,许多网站的口令库泄露,给研究者提供了大量真实口令数据。对大量真实口令的分析表明,用户生成的口令并不是随机的,其本身具有很强的规律性,从中发现内在的规律,并由此构造效率更高的破解字典,可以更为有效地解决字典变形方法中口令泛化能力弱的问题。评价口令猜测方法的因素主要有破解率和字典生成速度两个方面。前者体现了在指定猜测次数的情况下,对目标口令破解的能力;后者反映
透水混凝土是“海绵城市”建设的重要建筑材料,其多孔结构具有良好的透气透水功能,受到学者广泛关注。现有透水混凝土配合比设计方法假定骨料为球形颗粒,其实质是设计孔隙率,难以制备高强高透水混凝土。实际工程中,即使是单级配骨料(5~10mm,10~20mm),粒径范围也较宽,球形度较差,对透水混凝土骨架结构影响较大,导致透水混凝土实测性能远低于目标性能。此外,透水混凝土是一种干硬性混凝土,温湿度、风速、运
锂离子电池具有能量密度和工作电压高、循环寿命长等优点,是新能源汽车等产业的主要动力来源。然而,锂离子电池在工作过程中会释放出大量的热,电池本身的温度快速升高,电极副反应加剧,导致电池的有效容量严重衰减;在电池组中,还会引起电池间的温差逐渐扩大,加剧电池间的温度不均匀性,从而影响电池组整体的工作性能。因此,需要通过合理的热管理手段,及时移除电池工作过程中产生的热量,确保电池温度与电池间温差维持在一个
从20世纪起,随着社会的发展,传染病在生物种群中的传播逐渐获得社会各界的关注,科学家们通过建立数学模型,分析种群在疾病影响下的变化规律,研究疾病的传播,可以获取其发生原理和传播机制,从而制定更佳的防治策略.本文主要对两类生态-流行病模型进行分析,其中传染病仅在食饵中传播,且捕食者仅捕食染病食饵.通过微分方程的定性和分支理论知识,对系统的解的有界性、边界平衡点的存在性及其稳定性、正平衡点的存在性和分
二维过渡金属硫属化合物由于具有与零带隙的石墨烯不同的可调带隙,且展现出优异的光学和电学性能,引起了广大跨学科领域科研人员的研究兴趣。二硫化钼由于其稳定性,成为二维过渡金属硫属化合物家族中的主要研究对象。然而,量产晶圆尺寸的连续均匀单层二硫化钼薄膜仍是一个阻碍其工业化应用的挑战。目前,化学气相沉积被认为是一种大规模合成大面积的单层二硫化钼薄膜的有效简单技术。但是传统化学气相沉积方法缺点在于金属前驱体
由单质硫与金属锂组成的锂硫(Li-S)电池具有高达2600 Wh·kg-1的理论比能量,且单质硫储量丰富、成本低廉,因此被认为是极具潜力的下一代储能器件。然而,Li-S电池也面临着正极硫和其放电产物(Li2S和Li2S2)的导电性较差、可溶性中间产物多硫化锂导致的穿梭效应以及锂枝晶等许多问题。这些问题最终将导致电池的实际比容量和库伦效率较低以及循环性能较差。因为修饰层不仅可作为第二集流体提高活性硫
半导体电子器件技术作为推动社会信息化发展的基石,在过去六十年里不断地更迭进步,传统硅(Si)材料器件的性能逐渐逼近理论极限无法满足当前快速发展的市场需求,宽禁带半导体材料凭借其杰出的材料性能在高频、大功率电力电子领域有着广泛的应用前景。目前,以氮化镓(GaN)和氧化镓(Ga2O3)为代表的宽禁带半导体功率器件还不够成熟,尤其是针对GaN和Ga2O3功率器件的动态特性研究不够深入,使得器件的效率与可