论文部分内容阅读
盾构法施工经常会在开挖断面范围内遇到坚硬的基岩凸起地层。地面钻孔爆破处理凸起的基岩具有显著的优势,但是这种处理方法存在作业环境复杂、爆破效果不易检测两大难点。本文以珠海地铁金融岛站至横琴站区间淤泥-岩石地层岩石爆破工程为背景,采用理论计算、数值模拟、实验室实验和现场测试相结合的研究方法,对淤泥-岩石地层爆炸冲击波作用机理、淤泥-岩石地层爆生气体作用机理、不同装药条件淤泥-岩石地层爆破岩层动力响应特征、淤泥-岩石地层爆破振动特征、不同地层厚度淤泥-岩石地层岩石爆破振动传播特征等进行了研究。主要研究内容和结论如下:(1)对淤泥-岩石地层岩石爆破时爆炸冲击波作用机理进行了研究。通过理论分析,在水耦合装药的条件下,研究从炸药爆炸产生爆轰波,到爆炸冲击波分别通过炮孔中的水、炮孔周围岩石和淤泥的作用过程及作用特征。得出炸药在炮孔水深30m时,合理的炮孔装药不耦合系数为0.56、单孔装药量为5.55kg,在此装药结构下爆炸应力波导致的裂隙区半径为0.46m。(2)对淤泥-岩石地层岩石爆破时爆生气体作用机理进行了分析。1)采用理论分析的方法,在爆炸应力波对岩石产生作用之后,研究有水炮孔爆破成缝过程、有水炮孔准静态应力场强度和水楔作用下微裂纹的扩展规律。得出在爆炸应力波和水楔综合作用下裂隙区及弹性振动区范围,提出平面布孔方式采用梅花形交错布置和炮孔间距取值。2)基于爆生气体作用过程并通过实验室测试碎石子的堆积密度、碎石子与PVC板之间的外摩擦系数,得出直径1-1.5cm碎石子的堆积密度为1370 kg/m~3;直径1-1.5cm碎石子与PVC板之间的外摩擦系数为.042;在淤泥-岩石地层岩石爆破工程中,采用直径7.5cm的PVC管进行护壁,直径1-1.5cm碎石子堵塞炮孔时的最佳堵塞长度为0.16m。(3)对不同装药条件下淤泥-岩石地层爆破岩层的动力响应特征进行了研究。采用现场测试和动力有限元数值模拟相结合的研究方法,研究了水耦合装药及淤泥压力作用、空气耦合装药及淤泥压力作用、水耦合装药及无淤泥压力作用三种条件下岩石爆破动力响应。得出水耦合装药和淤泥压力作用下、水耦合装药和无淤泥压力作用下,节点振动速度矢量叠加峰值和孔深之间存在着线性关系,单元压力峰值和孔深之间也存在着线性关系,随着孔深增加,节点振动速度矢量叠加峰值、单元压力峰值均减小。空气耦合装药和淤泥压力作用下,节点振动速度矢量叠加峰值和单元压力峰值不受孔深影响。(4)对淤泥-岩石地层岩石爆破振动特征进行了分析。通过对现场爆破振动进行测试分析并对实测数据进行小波分析和量纲分析,得出:1)第一次爆破时,淤泥具有较好的结构强度,加速度振动波形持续时间约为0.4s,爆破振动速度的振动主频较大;经过爆破荷载的扰动之后,第二次爆破时,加速度波形持续时间延长0.4s,爆破振动速度的振动主频降低,非常接近建筑物的自振频率,容易引发建筑物共振,对地表建筑的危害较大;间隔10天,进行第三次爆破时,加速度波形持续时间接近第一次爆破波形持续时间,爆破振动速度的振动主频接近第一次爆破,脉动余振减弱。2)淤泥-岩石地层中岩石爆破时地表振动能量的优势频段接近建筑物的自振频率,对地表建筑振害影响较大。3)距离爆源30-60m时,竖直方向能量最大次数最多,其次为指向爆源的水平方向;距离爆源90-180m时,主要分析竖直方向上的爆破振动能量。4)建立的考虑爆源深度的数学预测模型,能更好地反映淤泥-岩石地层中岩石爆破振动作用对地表的影响。(5)研究了不同地层厚度下淤泥-岩石地层岩石爆破的振动传播特征。采用现场监测和有限元数值模拟相结合的研究方法,对5种工况条件下淤泥-岩石地层岩石爆破的振动传播特征进行了研究,得出在地表隧道轴线方向和垂直隧道轴线方向上,工况1(人工填土厚度3m、淤泥厚度30m)振速比其他4种工况振速峰值都大且衰减速度最快,需要对在工况1地质条件下爆破振动加强监测。距离圆心10m和15m,5种工况地表节点振速与淤泥-岩石侧隧道轴线180°时最大的次数最多,需要重点监测。地表到隧道竖直方向上,5种工况振速峰值均在淤泥-人工填土界面处突然变大,接着在距离爆源竖直距离2~4m范围内降低。盾构区间之上人工填土和淤泥厚度变化对隧道轴线方向上节点振速峰值影响不大。