基于微波散射法的脑中风微波探测研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:xxxhht
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
脑中风伤残率、死亡率、反复发作概率较高,很大程度上伤害人类身心健康,会导致病患家庭、国家经济负担过大。微波探测脑出血的原理是微波经过被测组织会出现电磁波的反射、散射及吸收,根据肿瘤组织与健康组织之间电磁参数存在明显差异,可以利用不同位置出血、不同出血量的散射信号幅度和相位变化量对脑出血进行研究。本文主要对应用于微波探测脑出血小型化宽带定向单极子天线单元、利用微波散射法对脑出血进行仿真探测、及模拟实验成像等三个方面做了相关研究。论文的主要工作内容如下:1、微波探测脑出血的天线单元研究。首先设计了一款工作频段为0.99~4.5GHz宽带全向单极子天线,采用半椭圆形贴片与阶梯型矩形贴片相结合构成的渐变辐射元结构,以及接地板采用缺陷地结构,使天线表面处电流路径得以延长,进而使天线达到宽带、小型化特性。最后在全向单极子天线背面加载金属反射板,以实现天线定向辐射特性,进行加工测试,实测结果和仿真结果吻合良好,天线实测阻抗带宽为1.08~3.28GHz、最大实测增益为7.28d B。通过对宽带定向单极子天线在DUKE头模型中SAR值进行仿真分析,人脑中最大SAR值为0.412W/kg,远小于我国电磁辐射安全标准,为后续利用微波检测技术对脑出血进行仿真分析以及模拟实验提供依据。2、出血性脑中风的微波探测仿真研究。利用小型化宽带定向单极子天线组成6单元天线阵列,等间隔放置在天线支架上,围绕在DUKE头模型周围,对不同位置出血、不同出血量情况下检测到的散射信号幅度、相位差变化以及电场强度分布进行了仿真研究。研究结果表明:小脑灰质位置出血以及D位置5ml出血量下检测到后向散射信号幅相变化整体上比前向散射信号幅相变化明显;E、F位置出血以及10ml、20ml出血量情况下天线1反射信号幅度、相位差变化整体比其他天线反射信号较大,并且散射信号相位差变化比幅度差变化大10倍。3、出血性脑中风的微波探测模拟实验研究。利用仿生头模型、天线支架、小型化宽带定向单极子天线、射频开关、矢量网络分析仪搭建脑出血探测模拟实验平台。分别利用6单元、模拟12单元天线阵对头模型中不同位置出血以及10ml、20ml出血量情况进行实验测试,矢量网络分析仪采集时域反射信号幅值数据,最后利用共焦成像算法对该数据进行反演成像。结果表明:不同位置出血以及10ml、20ml出血量情况下:模拟12单元天线阵的成像结果比6单元天线阵的伪影更少,目标更聚焦,图像分辨率更高。
其他文献
随着网络范围和规模的不断扩大,网络入侵的威胁比以往任何时候都要严峻。网络入侵检测系统是为了防止网络入侵而部署在计算机上的一种安全工具。由于攻击方法的日益复杂,新攻击不断出现,传统的入侵检测已无法满足检测要求,因此需要探索新的方法来检测网络中的入侵。近年来得益于深度学习的快速发展以及其在大数据分析、处理上的优势。本文以深度学习中的深度神经网络和卷积神经网络为基础,建立了一种能够自主学习的检测模型,该
计算机视觉已经在人工智能这个引领全球先进科技的领域中占有举足轻重的地位,目前研究者们在常规的图像增强、图像识别、目标检测等任务中已获得出色的研究成果。然而在我们日常的工作和生活场景中,仍有许多极端环境下的与图像相关的工作容易被忽视,譬如雨天、雾天、低照度、低分辨率等场景下的图像处理工作。针对其中的低照度场景,由于拍摄设备的曝光程度以及现实场景中的光线不充足等原因,通常会导致获取的图像亮度较低,并且
立德树人是高等教育的根本任务,在科学技术高速发展的今天如何利用先进的技术手段实现精准化思政教育成为现阶段的一个研究热点。对于学困生队伍(学业困难学生)的精准化帮扶是精准化思政教育的一个研究方向,而高校现有帮扶策略多以人工统计不及格科目、下达书面预警通知为主,或以简单关联算法实现对成绩的预测。本文在现有预警系统的基础上,对采用LSTM神经网络改进学业预警系统展开研究,具体工作如下:(1)针对学生行为
近年来,随着互联网的飞速发展,传统网络已经无法管控愈发复杂的网络结构和日益增加的数据流量。为适应网络的发展和进步,诞生了一种新型的网络架构,即软件定义网络(Software Defined Network,SDN)。这种网络架构将传统以太网中的控制层和数据层分离,由控制层实施集中控制。由于SDN能够提升网络的可编程性,实现网络流量的灵活控制,因此引起了学术界的广泛关注,其中一项重点研究课题是如何提
光子晶体光纤(Photonic Crystal Fibers,PCF)集成了光子晶体带隙调控光传播和光纤导光的两个特性,故广泛应用于新型光纤传感领域。其中,D型PCF的非圆对称结构能增强纤芯模式与样品的耦合作用,提升传感性能;其平整的侧抛光结构不仅易于样品填充,还易于结构镀膜。当D型PCF与表面等离子体共振(Surface Plasmon Resonance,SPR)技术结合时,其结构优势解决了P
在人与人的交往方式中,表情是传递人类情感信息与意图的重要方式,通过表情识别技术可以有助于计算机像人类一样观察、理解和提供相应的反馈。目前表情识别技术面临两个难题:一方面无论是基于几何特征还是纹理特征的特征提取算法都存在对皱纹、凸起、凹陷等细微面部变化不敏感;另一方面现有的算法无法解决实际生活中采集到的图片光照分布不均匀、噪声干扰等问题。针对上述的问题,本文分别设计了可变形卷积网络的面部动作单元识别
形式化方法是指依赖严格的数学基础对软、硬件系统进行形式规约、开发和验证的技术。形式规约作为形式化方法的基础,通过形式语言严格描述所开发系统的模型和其需要满足的性质,包括模型规约和性质规约。而性质规约分为线性时间规约和分支时间规约,安全性和活性作为这两种性质规约中的基础属性,已经得到了广泛的研究。安全性断言系统运行时“坏”的事情不会发生,而活性断言系统运行时“好”的事情最终会发生。安全性和活性的验证
5G(The fifth generation mobile communication,第五代移动通信)网络于2019年6月在国内正式商用,5G网络有三大特点分别是高速度、低延时和广连接,其中移动边缘计算(Mobile Edge Computing,MEC)是其中的一项关键技术,其能满足用户在低时延、低能耗、隐私安全等方面的需求。但是目前MEC服务器是部署在固定地点的,当其他区域有需求时无法快速
信息抽取是自然语言处理中的重要分支,目的是从非结构化或半结构化的文本中抽取出结构化数据,其最关键的子任务之一是关系抽取。然而以往的传统方法在处理复杂的文本结构时并不能达到良好的效果,往往无法处理其中的关系重叠问题以及抽取过程中产生的噪声信息。本文基于深度学习方法,围绕面向复杂文本结构的关系抽取研究,提出了针对传统流水线方法和联合学习框架的两种优化方案。论文的主要研究工作和创新内容如下:(1)设计了
随着工业物联网的全面发展,现代工业系统已呈现智能化的发展趋势。机电设备作为工业生产活动中重要组成部分,在智慧交通等领域应用广泛。高速公路机电设备内部结构复杂,运行环境恶劣等因素导致机电设备发生故障的可能性大幅提升。目前,高速公路机电设备的故障检测普遍采用传统的云计算模式,海量数据的远距离传输占用大量网络带宽,并存在高延迟现象。针对高速公路机电设备故障检测的实际应用场景,本文对基于边缘智能的机电设备