论文部分内容阅读
研究目的:使用SOS/umu试验研究3个北方城市的自来水厂的水源水、出厂水及末梢水的水样有机萃取物对鼠伤寒沙门氏菌TA1535/pSK1002细胞的DNA损伤作用,从而对水样中有机污染物的遗传毒性大小进行分析评价,并在此基础上预测饮用水致癌风险,同时为将此方法作为饮用水遗传毒性物质体外测试方法之一纳入相应饮用水管理规范提供实验依据。研究方法:选取3个北方城市(分别记为A市、B市、C市)的自来水厂的水源水、出厂水和末梢水为研究对象进行水样采集,每个采样点采集水样20L。使用HLB固相萃取小柱和丙酮洗脱液对水样中的有机污染物进行富集浓缩,应用SOS/umu试验进行细胞毒性测定和遗传毒性效应测定,水样有机提取物的染毒剂量设定为相当于原水的 2000 mL、1000 mL、500 mL、200 mL、100 mL、50mL,计算各水样染毒剂量对应的细胞生长因子(G值)和诱导率(IR值)来评价水样有机提取物的细胞毒性和遗传毒性效应;计算水样有机提取物相当于4-NQO的当量浓度和致癌风险指数P,预测致癌风险。研究结果:(1)采集于A、B、C三个城市的各个水样,在水样有机提取物的染毒高剂量时(相当于原水的2000 mL、1000 mL、500 mL)均表现出明显的细胞毒性,在水样有机提取物的染毒低剂量时(相当于原水的200 mL、100 mL、50 mL)的结果如下:A市水厂的水源水和出厂水在不加S9的条件下表现出明显的遗传毒性效应;B市水厂的水样在加S9和不加S9条件下均为未表现出明显的遗传毒性效应;C市1厂末梢水、2厂水源水、出厂水和末梢水在不加S9的条件下表现出明显的遗传毒性效应,1厂末梢水、2厂水源水和末梢水、3厂出厂水在加S9的条件下表现出明显的遗传毒性效应。(2)当致癌风险值取为10-6时,本实验中计算4-NQO的当量浓度为0.110μ g·L-1,因此将该值设定为安全饮用水遗传毒性致癌风险预测的基准值。根据各水样有机提取物相当于4-NQO的当量浓度和致癌风险指数P结果显示,A市、B市和C市各水样致癌风险均处在控制标准范围(10-6-10-4)内;其中A市水厂的水源水、出厂水和末梢水的4-NQO当量浓度均低于基准值,B市水厂的水源水和出厂水水样的4-NQO当量浓度均低于基准值,C市水样除了 3厂的末梢水以外,其他水样的4-NQO当量浓度均高于基准值。结论:(1)SOS/umu试验因其操作简便、实验过程中对无菌操作要求较低、实验周期较短、重现性好,在检测饮用水有机提取物的遗传毒性方面具有较高的灵敏度,故SOS/umu试验可应用于水体突发污染事件的早期快速遗传毒性效应评价,结合4-NQO等当量浓度对水体进行致癌风险评估是可行的。(2)本研究结果表明,A市采集水样的有机提取物在一定程度上表现出遗传毒性效应,且经过自来水厂氯化消毒后的出厂水遗传毒性效应增强;水样中有机污染物主要以直接致癌物为主,其不需要经过代谢活化就能够引起DNA损伤效应;B市采集的水样未表现出明显遗传毒性效应;C市采集水样的有机提取物在一定程度上表现出遗传毒性效应,2厂和3厂的遗传毒性大小为:水源水>出厂水>末梢水,1厂末梢水的遗传毒性大于水源水和出厂水。(3)根据4-硝基喹啉等当量浓度致癌风险结果判断,A、B、C三市水样的致癌风险均可接受,A市水样的致癌风险低于B市、C市。