Classification of ASD on Functional MRI Using Deep Convolutional Neural Network

来源 :济南大学 | 被引量 : 0次 | 上传用户:wuzhigang3481
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Autism spectrum disorder(ASD)is an abstruse brain disorder in neuroscience research,which lead by challenges of social interactions,speech and nonverbal communication,and repetitive behaviors.Diagnosis of ASD is mostly based on behavioral analysis,which is time-consuming and depends on patient cooperation and examiner expertise.The assessable analysis for ASD is rationally challenging due to the limitations of publicly available datasets.The non-invasive whole-brain scans endure the aptitude to succor for diagnosing neuropsychiatric disorder diseases such as autism,dementia,and brain cancer.For diagnostic or prognostic tools,functional Magnetic Resonance Imaging(f MRI)exposed affirmation to the biomarkers in neuroimaging research because of f MRI pickup inherent connectivity between the brain and regions.There are profound studies in ASD with introducing machine learning or deep learning methods that have manifested advanced steps for ASD predictions based on f MRI data.Machine learning(ML)and deep learning(DL)are recently applied to diagnosing autistic brain images and changing the questionnaire troublesome policy to treat a patient.There are profound studies in ASD with introducing machine learning or deep learning methods that have manifested advanced steps for ASD predictions based on f MRI data.However,there are some limitations using ML approaches such as investigation with functional magnetic resonance imaging(f MRI),depend on region-based analysis,and handling with the big dataset.Moreover,utmost antecedent models have an inadequacy in their capacity to manipulate performance metrics such as accuracy,precision,recall,and F1-score,ROC curve,and AUC score.In this thesis,we introduce ML and DL approaches to get state-of-the-art results to overcome all of these challenges.We used the support vector machine(SVM)as the most popular ML classifier and deep neural network(DNN)to classify ASD,respectively.We have done these works after investigation a vast amount of research papers in the field of neuroimaging of autism disorder.In the first study,we proposed a novel architecture based on the Bag-of-Features model for ASD classification.In the beginning,we preprocess the images to extract the speeded-up robust features(SURF)from the selected feature point locations.The Bag-of-Feature extraction procedures include feature concatenation,select the most vital feature,and convert to feature vector.After that,we employ K-Means clustering to create a word visual vocabulary from the SURF vector.Then,we encode the Bag-of-Features by adopting coding and quantization techniques to get each class’ s indexed database.We prefer the most tremendous machine learning methods SVM as ASD classifier.Finally,we independently evaluate our proposed architecture’s performance using three different datasets from different fields,including ABIDE f MRI preprocessed images and subject’s face images.In our experiments,weigh against other state-of-the-art methods that our ML classifiers with Bag-of-Feature extractors reinforce in medication and clinical purposes of ASD.However,after completing the first work,we noticed that the classification accuracy is not good enough to rely on ML.Besides,SVM is not performing well to handle large datasets like as ABIDE dataset.In the second study,to avoid the circumstance of the first work problems and getting motivated to start the second work,we proposed a benchmark model,an avant-garde“Dark ASDNet,” which has the competence to extract features from a lower level to a higher level and bring out promising results.In this work,we considered 3D f MRI data to predict binary classification between ASD and typical control(TC).Firstly,we preprocessed the 3D f MRI data by adopting proper slice time correction and normalization.Then,we introduced a novel Dark ASDNet which is surpassed the benchmark accuracy for the classification of ASD.Our model’s outcomes unveil that our proposed method establishes state-of-the-art accuracy of94.70% to classify ASD vs.TC in ABIDE-I,NYU dataset.Finally,we contemplated our model by performing evaluation metrics including precision,recall,F1-score,ROC curve,and AUC score,and legitimize by distinguishing with recent literature descriptions to vindicate our outcomes.The proposed Dark ASDNet architecture provides a novel benchmark approach for ASD classification using f MRI processed data.
其他文献
饲粮纤维(膳食纤维)的定义有多种解释,常见的是基于化学成分和生理功能。从化学成分的角度来看,饲粮纤维是非淀粉多糖(NSP)和木质素的总和。DF的来源和组成在较为广泛。饲粮纤维源的物化性质可能会引起肠道内环境的变化,从而引起肠道菌群分布变化。猪饲粮中作为饲料营养成分的可接受性取决于一些因素,如膳食纤维含量、大肠微生物发酵水平以及对产生的挥发性脂肪酸(VFA)的吸收和利用程度。纤维来源的发酵发生在GI
在粒子物理学中,标准模型得到了快速且完善的发展,但仍然需要对其进行精确的检验,这就给实验家提出了新的挑战。量子色动力学(Quantum Chromodynamics,QCD)在高能量范围内可以使用微扰理论进行解释,但微扰理论不适用于低能量范围。北京谱仪 Ⅲ(Beijing Spectrometer,BESⅢ)实验的能量范围正处于 2.0000-4.7000 GeV,且在此范围内采集了大量的数据样本
近年来,镁合金由于其密度低,比强度高,减震性好等优点,成为了航空航天和汽车制造等诸多领域极具前景和应用价值的金属材料。然而,其强度低、耐磨性差以及耐腐蚀性能较差等原因,在工业生产中受到了限制。表面滚压强化是一种通过机械加工的方式实现零部件表面强化的加工工艺,可有效提高零部件表层的综合性能,延长其使用寿命。虽然表面滚压强化在工业生产中已经获得了初步应用,但对镁合金的表层力学性能、耐磨性以及耐腐蚀性能
稀土在钢中的应用多集中于非金属夹杂物的改性以及钢液的净化作用,随着冶炼技术的发展,稀土在钢中的微合金化机理已成为材料性能调控而亟待探究的问题。本文以添加稀土钇(Y)的H13钢为研究对象,利用扫描电镜、电子背散射衍射、透射电镜、三维原子探针、热膨胀仪和多功能内耗仪等手段系统研究了稀土Y对H13钢微观组织及性能的影响,揭示了稀土Y对H13钢性能调控的微合金化作用机理。主要研究结论如下:(1)适量稀土Y
基于野外露头资料,通过旋回地层学、地球化学等分析方法,运用有机碳同位素组成及化学风化指标数据序列,滤波输出记录在沉积物中的天文轨道参数,探讨天文轨道周期变化及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响。研究表明,天文轨道周期驱动下的气候变化控制不同级次海平面波动,斜率周期调制的气候变化驱动海洋温盐循环,将位于高纬度区营养物质向中低纬度区转移,温盐循环是低纬度扬子区海洋生产力的主要动力。
近年来,有关废气排放的法规日益严格,导致汽车发动机效率要不断提高,传统的铸造Al-Si合金的高温强度、耐热疲劳等性能目前已临近极限,不能满足新型高功率发动机的发展要求。合金化是解决铸造Al-Si合金高温性能不足的主要手段,通过固溶强化、弥散强化、消除高温亚稳相等,改善合金显微组织,达到铸造Al-Si合金高温性能的要求。但是,合金元素含量过高会产生脆性相使合金的性能恶化。因此,只有添加适量的合金元素
钙钛矿材料作为一种性能优异的光电材料成为了研究的热点,但是不可忽略的铅毒性和较差的环境稳定性严重阻碍了其实际的应用。基于此,提出了构筑双钙钛矿结构体系,更多的无毒离子被用来替代铅离子,以此来降低钙钛矿的毒性和提高其环境稳定性。在具有双钙钛矿结构的各种组合物中,Cs2Ag In Cl6由于其具有直接带隙,长的载流子寿命和易于加工性等特点受到了更多的关注(详见第一章)。在本论文中,作者通过设计不同的合
蛋白质翻译后修饰(PTMs)是蛋白质功能的重要调控因子,是指由PTM酶协调的蛋白质的化学修饰,在许多生理的过程中起到了关键作用。目前已经鉴定出来的近200种不同类型的PTMs。其中有超过一半的真核生物蛋白质在其生物周期中的某个时刻被翻译后修饰。构成蛋白质序列组成常见的氨基酸中,半胱氨酸和赖氨酸是常见的蛋白质序列中修饰的残基。当下,通过蛋白质组的方法,蛋白质修饰位点已经能够在实验中获取,然后实验上所
由于船舶运输业经济实惠,近年来国际海上贸易业发展十分迅速,但同时随之而来船舶尾气危害也十分严重,其中的SO2对大气环境和人体有着很大的危害,所以针对目前状况,国际海事组织颁布了诸多法规来控制船舶排放SO2的量。相比于低硫燃料控制SO2技术,安装湿法船舶尾气脱硫设备走的更长远,其中钠碱法尾气脱硫技术具有可在全海域航行、脱硫效率高与无二次污染的优点,所以采用该方法脱硫十分可行。本文对国内外脱硫技术现状
肺炎通常是由病毒、细菌等类似病原体引发的肺部感染性病变,对人体的威胁程度较大。2019年12月,新型冠状病毒肺炎(Coronavirus disease 2019,COVID-2019)爆发并在全球范围内传播,肺炎的快速准确诊断已成为当前的一个重要研究领域。肺炎的诊断方法一般包括病原性检测、血常规、影像学筛查等,但存在手段冗杂、确诊时间长、漏检率高等问题,阅片诊疗医生工作量大。因此采用人工智能技术