论文部分内容阅读
液环泵是一种用来抽送气体的流体机械,由于其流量大、无金属表面接触、压缩过程中温度变化小等优点被广泛应用于电力、化工、煤矿、制药等国民经济的重要领域。由于液环泵内复杂的气液两相流动导致其存在效率低、振动噪声大、叶片易断裂等问题。液环泵内气液两相流动的复杂性导致其性能优化困难,难以满足我国核电、石化、煤矿等领域的国家重大需求。基于此,本研究以2BEA型液环泵为对象,采用数值模拟与实验测试相结合的方法研究了液环泵内的复杂气液两相流动特性,开展了液环泵内气液两相流场的可视化测试及泵内流动的瞬态特性实验研究,进行了液环泵叶轮内瞬态气液两相流场的POD特征分解及降阶模型流场预测分析,并基于POD代理模型方法开展了液环泵的水力性能优化研究。主要工作及研究成果如下:1.开展了液环泵内气液两相流动结构的可视化测试及其水力激励特性的实验研究。研究结果表明:随着转速的逐渐增大,由气相浸入到液环内的气泡逐渐增多,利用气泡对液环内流场结构的示踪作用,得到了气液自由分界面形状及液环内的尾迹涡、叶道涡分布。泵壳体内壁的压力脉动沿圆周方向具有显著的非对称性,其压力脉动的主要激励源为复杂尾迹涡结构的周期性演化发展,此外流动分离及动静干涉对壳体内壁压力脉动的产生具有较大影响。轴承箱主频振动由机械共振导致,泵壳体振动的主要特征频率与泵内水力激励有关,底座振动受轴承箱振动传导激励的影响较大。2.基于液环泵内气液两相流场的高精度LES数值结果,分析了泵内气液流动的瞬态特性,采用涡识别技术对液环泵内复杂涡系结构进行了辨识及分析。分析结果表明:泵体内压力脉动的低频信号和低频涡的周期性发展演化相关;叶轮出口的压力脉动沿周向呈明显的分区特性;动静干涉效应对泵进口上游流动的非稳态特性影响较小,其对泵出口下游流动的非稳态特性影响较大,排气段内存在复杂的低频回流涡结构。随着叶轮的旋转,吸气侧的叶道涡逐渐流出流道与叶轮出口尾迹涡及壳体内壁发展的分离涡相互碰撞形成更为复杂的流动结构;排气侧的尾迹涡与壳体内壁分离涡在叶轮高速旋转作用下一起流入叶轮流道。Q准则和Ω准则对液环泵内三维涡结构的辨识能力基本相同,Ω准则同时兼具分析气液两相内不同强度及尺度涡结构的能力。3.研究了液环泵叶轮轴向间隙泄漏流结构及其对泵水力性能和主流场特征的影响。结果显示,液环泵轴向间隙泄漏主要发生在压缩区及吸气区,间隙泄漏流与流道主流掺混形成间隙泄漏涡,间隙泄漏对泵水力性能有一定的影响,对泵内流场主要特征的干扰较小。液环泵吸气段内的轴向主流气体对吸气侧轴向间隙的泄漏流有一定的干扰作用;液环泵吸气流量对其轴向间隙泄漏较为敏感,小流量工况下叶轮轴向间隙泄漏更为严重。4.开展了液环泵内瞬态气液两相流场的POD特征分解及降阶模型流场预测分析。分析结果表明:POD方法可以实现对液环泵内气液瞬态流场的时空解耦分析。模态系数的时域变化能够反映各阶模态场的能量、频率及相位变化规律;不同含能模态能够表征不同特征及不同尺度的流场结构,含能较高的若干阶模态可包含大部分的流场信息。POD降阶模型能够精确预测样本空间内的流场,其对泵进口压力、叶轮相态及叶轮速度场预测结果的最大相对误差分别约为0.2%、4%、8%;在样本空间以外POD降阶模型具有一定的外延预测精度,当预测目标远离样本空间时,其预测精度逐渐降低。5.开展了基于POD代理模型的液环泵性能优化研究。由初始样本的叶型参数及其对应的流场参数构建POD代理模型,采用POD代理模型代替CFD数值模拟对叶型控制参数扰动下的流场响应进行快速准确预估,由此预估目标函数对控制变量的梯度矢量,并沿梯度矢量方向优化叶片型线。算例优化结果表明:POD方法预测的泵内流场与CFD计算结果之间的相对误差小于5%,且计算量得到了显著减少;POD代理模型方法优化模型的效率较原始模型提升3.8%。POD代理模型方法能够大大减少液环泵水力优化过程中流场模拟的计算量。