论文部分内容阅读
鉴于天然[Fe Fe]-氢化酶是自然界中一类具有高效催化质子还原成氢气的金属酶,故对其活性中心结构和催化功能的化学模拟已成为目前生物无机化学和新能源材料领域研究的前沿和热点。同时,氢气被认为是下一代清洁和可再生新能源的最佳燃料,而氢燃料的广泛使用对解决当今人类面临日益严重的能源和环境问题具有重要的理论意义和潜在的应用前景。基于此,本论文率先设计并合成了一系列磷配体取代的新型[Fe Fe]-氢化酶模拟物及其碳纳米管复合物,以及对这些模拟物及其复合物的结构和催化性能进行了研究,取得了如下的创新性研究成果:1.本论文共合成了22个结构新颖的磷配体取代[Fe Fe]-氢化酶模拟物,它们的结构均经过了FT-IR、1H-NMR和31P{1H}-NMR表征,其中利用X-射线衍射技术测定了15个化合物的单晶分子结构,以及对其部分化合物的电催化制氢性能进行了研究。更为重要的是,本论文通过共价键桥连方式首次将[Fe Fe]-氢化酶模拟物与单壁碳纳米管进行成功复合,其复合物的结构经过了FT-IR、XPS、TEM、Raman表征,并对其电催化制氢性能进行了研究;同时,通过π-π共轭物理吸附方式首次将[Fe Fe]-氢化酶模拟物与含卟啉光敏基的单壁碳纳米管进行复合组成光催化体系,并对其体系的光催化性能进行了初步探索研究。2.本论文第二章中介绍了利用新型全羰基模拟物Fe2{(μ-SCH2)2N-(C6H4CH2CH2OH)}(CO)6(1)与不同的单膦配体PR3通过氧化脱羰的配体取代反应,首次合成了六个单磷取代的[Fe Fe]-氢化酶模拟物Fe2{(μ-SCH2)2N-(C6H4CH2CH2OH)}(CO)5(PR3)[R=C6H4Me-m,2;C6H5,3;C6H4Me-p,4;C6H4OMe-p,5;C6H4Cl-p,6;C6H4F-p,7],并测定了其中五个模拟物1、3-6的单晶结构。此外,利用电化学循环伏安法对其模拟物1、3-7的电化学性质研究发现:在弱酸HOAc作为质子源时,它们均可以有效的电化学催化质子还原成氢气,并提出了相应的可能催化机理。3.本论文第三章中介绍了通过酯化反应将上述含桥头羟基的模拟物(1)与含表面苯甲酸基的单壁碳纳米管(f-SWCNT)以共价键桥连方式结合,成功制备出首例[Fe Fe]-氢化酶模拟物与碳纳米管复合模拟物Fe2{(μ-SCH2)2N-(C6H4CH2CH2O(O)CC6H4-SWCNT)}(CO)6(1-f-SWCNT),并通过IR、Raman、XPS和TEM对其结构进行了准确表征。此外,通过电化学线性扫描法对其复合物(1-f-SWCNT)的电化学性质研究发现:在0.5 M稀硫酸作为质子源的条件下,可以稳定、有效地催化质子还原为氢气,在4小时的控制电位电解过程中消耗的总电荷为9.23 C,转化数(TON)为17.12 F/mmol。4.本论文第四章中介绍了通过溶液物理混合方法将上述含单膦配体的模拟物(6)与含卟啉光敏基的单壁碳纳米管(TPP-f-SWCNT)以π-π共轭表面吸附方式结合,首次构建了由[Fe Fe]-氢化酶模拟物、卟啉光敏基及其碳纳米管组成的三元仿生光催化体系。通过紫外-可见光谱和荧光光谱对其光催化体系的光致发光性质研究表明:该新型光催化体系在可见光区照射下具有光生电荷的能力。但是,在利用Na BH4存在下光催化还原4-硝基苯酚(4-NP)至4-氨基苯酚(4-AP)并结合紫外-可见光谱来评价该催化体系的光催化性能,其结果显示:卟啉-碳纳米管-[Fe Fe]-氢化酶三元光催化体系不能使4-硝基苯酚(4-NP)被Na BH4还原成4-氨基苯酚(4-AP),从而表明该三元光催化体系不适于4-NP的光催化还原。5.本论文第五章中介绍了利用全羰基模拟物Fe2(μ-pdt)(CO)6(pdt=(SCH2)2CH2,A)与不同的双膦配体PNP(PNP=(Ph2P)NR)通过光照羰基的配体取代反应,首次成功合成了六种PNP螯合取代的新型[Fe Fe]-氢化酶模拟物Fe2(μ-pdt)(CO)4{(κ2-Ph2P)2NR}[R=(CH2)3Me,8;(CH2)3NMe2,9;(CH2)3Si(OEt)3,10;C6H5,11;C6H4OMe-p,12;C6H4CO2Me-p,13]。其次,通过加热回流脱羰或氧化脱羰的配体取代反应成功合成六种双膦桥连取代的新型[Fe Fe]-氢化酶模拟物Fe2(μ-pdt)(CO)4{(μ-Ph2P)2NR}[R=(CH2)3Me,14;(CH2)3NMe2,15;(CH2)3Si(OEt)3,16;C6H5,17;C6H4OMe-p,18;C6H4CO2Me-p,19]。同时,在制备模拟物11-13的过程中,三个新的单磷取代[Fe Fe]-氢化酶模拟物Fe2(μ-pdt)(CO)5{κ1-Ph2P(R)}[R=NHC6H5,20;NHC6H4OMe-p,21;NHC6H4CO2Me-p,22]被得到。利用X-射线单晶衍射技术测定了十个模拟物8、9、11-13、15、17-19和21的单晶结构。通过对代表模拟物8和14的电化学性质的对比研究表明:与PNP桥连取代模拟物14相比,PNP螯合取代模拟物8具有高效的电催化质子还原为H2的能力。