样条函数空间的一个子空间的希尔伯特变换

来源 :三峡大学 | 被引量 : 0次 | 上传用户:tdsc110
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
B样条构成了样条函数空间某一子空间的一组Schauder基。在本文中,我们将详细说明为什么B样条的希尔伯特变换也构成了该子空间希尔伯特变换的一组Schauder基以及如何使它们成为一组Riesz基。除此之外,我们得到的主要结果有:B样条的希尔伯特变换与x-1具有相同的衰减性;希尔伯特变换算子保持了B样条的光滑性以及某个关于B样条高阶导数的递推公式。我们也得到了B样条的希尔伯特变换在节点处导数的表达式。更为重要的是我们得到了一个B样条的希尔伯特变换的全新表达式。
其他文献
不动点理论是非线性泛函分析理论的重要组成部分,在不动点理论研究的众多方向中,构造各种不动点迭代序列的收敛问题以及在积分方程、非线性算子方程和微分方程等方面的应用成为
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
对于S4(1)中具有常数量曲率的连通紧致极小超曲面M3,我们通过对主曲率的重数分类讨论,已经知道具有常数量曲率的连通紧致极小超曲面M3的数量曲率R为0,3,6。并且极小超曲面M3一定
本文主要研究保险公司剩余金额服从Ornstein-Uhlenbeck过程的Omega模型。在这种模型下,即使余额达到负值,公司仍然有可能继续运行。而这里讨论的破产时刻也并非经典风险模型中
摘 要:无论是执行任务或是日常训练,边防舰艇夜航是无可避免的。如何保障舰艇航行安全呢?本文通过分析舰艇夜航的特点和要求,并结合舰艇夜航的实际,分析了影响舰艇夜航安全的因素,提出相对应的保障夜航安全的对策和措施。  关键词:夜航 安全 对策与措施  一、日航与夜航的区别  舰艇夜航与日航相比较,有其不同的特点和要求:第一,舰艇进入夜航,要增加夜视系统、导航雷达、通信、录音系统等设备,艇员必须熟练掌握
对称正定矩阵作为一类常用矩阵,不仅广泛应用于数学的许多分支,如数值代数、微分和积分方程、数学规划、数理统计及网络流优化等,而且它还被广泛应用于工程计算、自动控制、图像
近年来,海量数据给人们带来巨大信息量的同时,也给数据的分析方法提出了巨大挑战。在数据变量维数很大、样本量却较小的情形下,判断总体之间是否有显著差异,是如今假设检验的一个
本论文中所有的群均为有限群.   群G的子群H称为G的s-条件置换子群,如果对群G的任意Sylow子群P,存在一个元素x∈G,使得HPx=PxH.   群G的子群H称为G的s-拟正规子群,如果对群
本文我们考虑下面的线性模型:Yi=Xiβ+ξi,1,2,…,这里β是一q维未知参数变量,{ξi}是一列i.i.d.实验误差,Eξ(1)=0,0<σ2=Eξ21<∞。我们的第一个目的是建立误差方差估计σ2的中