论文部分内容阅读
陶瓷刀具由于其耐高温、耐腐蚀和高硬度等优点,成为新型高速切削刀具的重要发展方向。本文针对陶瓷刀具干切削加工时摩擦系数大和裂纹扩展的问题,提出了通过向陶瓷刀具基体内添加具有特定功能的组分,使刀具具有裂纹修复与自润滑的功能,从而满足干切削加工需求。通过向Al2O3/Ti C陶瓷基体中添加不同含量的修复剂Ti B2,利用真空热压烧结制备了具有自修复能力的Al2O3/Ti C/Ti B2陶瓷刀具材料。力学性能测试表明,当Ti B2含量为10 vol%时,Al2O3/Ti C/Ti B2刀具材料综合力学性能最好,其抗弯强度为703 MPa,维氏硬度为18.3 GPa,断裂韧性为6.23 MPa·m1/2,相比于Al2O3/Ti C陶瓷刀具材料分别提升了12.6%、2.3%、19.8%。刀具材料断口微观结构显示,添加适量的Ti B2能够抑制Al2O3晶粒异常长大,有效细化晶粒,并且能够诱发穿晶断裂,显著改善刀具材料力学性能。通过压痕法在Al2O3/Ti C/Ti B2自修复陶瓷刀具材料表面预制了不同尺寸的裂纹,分别研究了不同热处理条件下的裂纹修复情况。结果表明,当热处理温度在600-800℃之间时,随着温度的升高,陶瓷裂纹试样强度呈现出先升高后降低的趋势。其中700℃热处理60 min时,与未热处理裂纹试样相比,裂纹修复后的试样强度恢复到光滑试样的91.6%,最大裂纹修复长度达到500μm。研究表明,裂纹修复机理为在高温空气环境下刀具材料中的Ti B2氧化生成熔融状态的玻璃相B2O3和Ti O2,在毛细作用下流向裂纹区域并填充裂纹,产生粘合作用,恢复试样强度。同时Ti O2和B2O3在刀具材料表面和裂纹内壁上形成保护膜,以防止材料被过度氧化。利用非均匀成核法制备了纳米h-BN@Al2O3包覆型固体润滑剂,将其添加到Al2O3/Ti C/Ti B2自修复陶瓷基体中制备了具有自修复能力的自润滑陶瓷刀具材料Al2O3/Ti C/Ti B2/h-BN@Al2O3。力学性能测试表明,当h-BN@Al2O3含量为5 vol%时,其综合力学性能最好,抗弯强度为610 MPa、维氏硬度为17.9 GPa、断裂韧性为5.17 MPa·m1/2,相比于直接添加5 vol%h-BN的Al2O3/Ti C/Ti B2/h-BN刀具材料力学性能分别提升了15.96%、17.31%、10.7%。断口微观结构显示,纳米h-BN@Al2O3均匀分布在材料内部,无团聚现象,且h-BN表面的Al2O3外壳与基体材料一致,在烧结过程中与基体材料熔融形成纳米晶内结构,减少了残余应力的产生,有利于提升刀具材料力学性能。研究还发现,在裂纹破坏Al2O3外壳后,h-BN暴露在高温空气中氧化生成的B2O3也会对裂纹起到修复作用。裂纹试样在空气环境中700℃处理60 min后,刀具材料的抗弯强度恢复到光滑试样的98.20%。分别以Al2O3/Ti C和Al2O3/Ti C/10 vol%Ti B2/5 vol%h-BN@Al2O3为刀具材料制备了陶瓷刀具AT和具有自修复能力的自润滑陶瓷刀具AT10B@5。研究了AT和AT10B@5陶瓷刀具在不同切削条件下的切削性能。研究表明,相比于AT刀具,AT10B@5刀具能够有效降低加工工件表面粗糙度和前刀面摩擦系数。其中切削过程中的主切削力降低了20.8%,切削温度降低了22.2%,且AT10B@5刀具的有效切削距离增加。切削过程中AT刀具前刀面主要的磨损形式为粘结磨损,同时伴随微崩刃现象,后刀面主要为磨粒磨损。AT10B@5刀具前刀面磨损形式为粘结磨损,后刀面磨损较浅且面积相对较小,主要磨损形式为粘结磨损、氧化磨损和轻微的磨粒磨损。