【摘 要】
:
硫量子点(SQDs)是纯元素量子点中的一个新兴类别,其独特的光学性质、良好的稳定性及无毒性使其受到广泛关注。本文主要研究内容是通过溶剂热法及回流法合成SQDs,并利用配体钝化策略对其功能化,改善它们的光学性能,实现SQDs绿色到蓝色的可调荧光发射和固态荧光发射。表征并讨论了SQDs的光学性能和发光机理,并将其应用于药物、染料及抗生素荧光传感和光学器件领域。主要研究内容包括以下部分:1.通过PEG增
论文部分内容阅读
硫量子点(SQDs)是纯元素量子点中的一个新兴类别,其独特的光学性质、良好的稳定性及无毒性使其受到广泛关注。本文主要研究内容是通过溶剂热法及回流法合成SQDs,并利用配体钝化策略对其功能化,改善它们的光学性能,实现SQDs绿色到蓝色的可调荧光发射和固态荧光发射。表征并讨论了SQDs的光学性能和发光机理,并将其应用于药物、染料及抗生素荧光传感和光学器件领域。主要研究内容包括以下部分:1.通过PEG增加SQDs之间空间位阻的方式,得到了具有抗自猝灭的固态SQDs。以升华硫,聚乙二醇(PEG)为前体,通过溶剂法直接制备了绿色荧光G-SQDs。进一步H2O2辅助刻蚀后,得到蓝色荧光B-SQDs。通过实验和理论计算研究了SQDs荧光发射可调及固态发光机理。此外,B-SQDs可以用于黄连提取物盐酸小檗碱特异性检测。固态SQDs已成功应用于荧光膜、指纹成像及发光二极管的制造。2.利用β-SQDs比率荧光(I460/I555)和散射光(I708)的双重响应实现对染料吖啶橙(AO)的检测。以升华硫为硫源,β-环糊精(β-CD)为钝化剂,通过溶剂热法快速合成了蓝色荧光β-SQDs。β-SQDs可作为AO的荧光传感器,通过一系列表征证明了二者之间的反应是内滤作用和静态猝灭共同导致的。AO浓度与β-SQDs的荧光强度之间存在良好的线性关系,以比率荧光得出的检测限低至0.41μM(0-60μL)和2μM(60-90μL),以散射信号计算检测限为1.95μM(0-90μL)。3.基于聚乙烯醇(PVA)侧羟基与SQDs表面产生的强烈亲和作用,使升华硫溶于PVA溶液中,通过回流法制备蓝色荧光A-SQDs。A-SQDs显示出良好的单分散性、水溶性和荧光稳定性。A-SQDs对盐酸土霉素(OTC)表现出独特的荧光选择性,检测限为3.38μM。通过实验证实了,二者之间的传感机制为荧光共振能量转移。将A-SQDs成功应用于水样、牛奶和猪肉样品中OTC的测定,具有满意的回收率和良好的相对标准偏差。
其他文献
胶体静电纺丝可将胶体颗粒嵌入到电纺纤维中,获得特殊结构的复合纤维膜。但选用的胶体颗粒多以聚苯乙烯(PS)和二氧化硅(Si O2)等硬球为主,相关研究也主要集中于纤维的形貌调控。此外,对不同结构的复合纤维膜进行不同的处理,可拓展其应用范围和研究领域。本文以温敏性的聚(N-异丙基丙烯酰胺-co-丙烯酸叔丁酯)(P(NIPAm-co-t BA))微凝胶为胶体颗粒,聚丙烯酰胺(PAAm)为载体,制备出黑莓
随着有机染料废水和空气中VOCs(挥发性有机化合物)排放量的不断增加,一系列的环境问题越来越严重。在环境治理和修复方面,光催化技术被认为是一种有效手段之一。光催化剂的制备是光催化领域的应用关键。目前,人们在对众多半导体材料研究的基础上开发了一系列光催化应用。然而,防止光生电子-空穴对复合并提高其迁移能力仍然是光催化剂面临的挑战。UiO-66系列是一种MOFs材料,由金属模板和有机连接体组成。UiO
近年来,随着聚合物微球的制备技术不断发展,功能化磁性聚合物微球因其具有磁性、活化位点丰富的功能化基团,在生物、医学等领域的应用越来越广泛。微米级的功能化磁性聚合物微球的比表面积大,得到了科研工作者的广泛关注。如今,研究者对小粒径纳米级的磁性聚合物微球制备研究较多,而对大粒径微米级的功能化磁性聚合物微球的制备技术不成熟,国外掌握着制备大粒径磁微球的专利技术,在国内购买功能化磁微球的价格昂贵。微米级氨
膜法富氧技术由于其占地面积小、启动快、投资少、无污染、能耗低等优点,在各行各业中被广泛的应用。目前,越来越多的高氧气透过率以及氧气/氮气选择性的成膜高聚物相继被开发出来。但是,如何将其制备成膜是以上聚合物材料走向应用的必经之路。基于此,我们开展了以下一系列的工作,探索由聚合物相转化成膜,以及制备中空纤维膜的过程并对其成膜机理进行了一定分析。具体表现在一下三个方面:(1)使用商业化的聚砜为原料,探索
氢气是一种能量密度高的绿色可持续能源,电化学是一种很有前途的无碳排放制氢技术,海水在世界水资源中储量丰富,因而利用电化学方法直接电解海水生产氢气将会对能源和环境产生积极的影响。电极是电化学过程中的重要影响因素。本论文从电极材料的化学组成和微观结构入手,首先选择导电性好,稳定性强的碳毡为基底,在其表面原位生长镍基金属化合物,通过调整其活性比例、金属配位和内部结构,再通过形貌、结构以及电化学性能分析,
核酸适配体是一类具有特殊碱基序列的寡核苷酸分子,不仅是遗传信息的载体,还可以与不同类型的靶标,如小分子、毒素等进行特异性杂交,同时核酸适配体具有的易于合成、易于修饰、尺寸小、稳定性好以及良好的亲和力和特异性等优点,使得通过核酸适配体制备各种检测探针成为研究的热点。本论文基于核酸适配体建立可视检测体系,主要开展以下两个方面的工作:1.构建基于核酸适配体的镉离子可视检测体系。以镉离子适体修饰金纳米粒子
传统化石燃料的大量消耗导致环境污染问题日趋严重。氢,具有燃烧热量高且无副产物等优点被视为21世纪高效绿色新能源。利用太阳能分解水制备氢气因其绿色环保而备受关注。这意味着开发高效太阳光响应的光催化剂是实施这一新技术的关键。卟啉敏化的TiO2具有优异的光解水产氢性能,但卟啉分子易于在TiO2表面聚集导致分子间能量猝灭,且这类催化剂易于流失不便回收利用,限制了该光催化剂的实际应用。为解决这一问题本文以聚
无机膜拥有优异的化学和热稳定性,常应用于苛刻环境中的物质分离。金属膜作为无机膜体系中的一类,因其特有的柔韧性和高机械强度,近年来成为研究的热点。中空纤维的微观结构克服了无机膜装填密度低的缺点,可减小设备体积,提供更大的膜面积,更利于实际生产应用。本论文采用相转化-气氛烧结法制备了金属镍中空纤维多孔膜,重点研究了中空纤维膜孔结构的调控方法及其在微滤上的应用表现。采用相转化-气氛烧结法,成功制备出了金
近年来,癌症已经成为危害人类健康最大的隐患,化疗是目前最常用的治疗癌症的手段,但是,传统化疗药物普遍存在诸多缺点,如水溶性差、选择性差、毒副作用大等。为解决这些问题,提高患者的生存质量,纳米药物递送系统(DDS)应运而生。其中,纳米聚合物胶束作为常见的纳米药物递送系统,可以增强传统化疗药物的水溶性和生物相容性,增加药物的体内循环时间,并且可以实现药物的响应性释放,减少对正常机体的毒副作用。本论文旨
随着石油、煤炭等能源的过度开采利用,石油等化石资源的不可循环致使能源越来越少,寻找可以替代的能源迫在眉睫。生物质能源是以农林植物为主的生物质资源作为原料加工而成的一种新型能源。非均相催化可以实现将可再生生物质资源转化为运输燃料、高附加值化学品的目标。其中,将木质素中高含量的苯酚在催化剂作用下通过加氢反应生成用途广泛的工业原料(环己醇)是近年来的研究热点,因此研发高活性、高选择性和高稳定性的催化剂是