【摘 要】
:
氮化镓(GaN)器件凭借其高电子迁移率、高二维电子气密度等优势广泛应用于雷达、通信等领域。在实际应用中,氮化镓器件会面临氢气环境,这可能对器件的电学性能产生影响。因此本文主要针对氮化镓器件的氢效应和氢处理后氮化镓HEMT器件的电应力可靠性两个方面开展现象分析和机理研究。首先开展了氮化镓器件的氢效应研究。将GaN器件置于压强0.5MPa、浓度为99.9%的氢气气氛中,并于120℃下处理168h。氢处
论文部分内容阅读
氮化镓(GaN)器件凭借其高电子迁移率、高二维电子气密度等优势广泛应用于雷达、通信等领域。在实际应用中,氮化镓器件会面临氢气环境,这可能对器件的电学性能产生影响。因此本文主要针对氮化镓器件的氢效应和氢处理后氮化镓HEMT器件的电应力可靠性两个方面开展现象分析和机理研究。首先开展了氮化镓器件的氢效应研究。将GaN器件置于压强0.5MPa、浓度为99.9%的氢气气氛中,并于120℃下处理168h。氢处理后,器件阈值电压负向漂移0.8V,峰值跨导和饱和漏电流增加,关态漏电流和反向栅泄漏电流减小。进一步实验结果表明,氢处理抑制了器件的电流崩塌和栅延迟,使得器件栅延迟时间由100μs减小到10μs。GaN器件氢效应的作用机理是H2分子在金属的催化作用下分解成H原子,一部分H原子在扩散运动中钝化了陷阱,使氢处理后器件噪声功率谱密度减小一个数量级,陷阱密度从2.36×1019e V-1cm-3减小到7.23×1018e V-1cm-3,因此器件的电流崩塌和栅延迟得到了改善。另一部分H原子在扩散运动中失电子而成为H+离子分布于异质结界面附近,变频电导表征结果表明氢处理后器件Metal/Al GaN接触界面态密度减小,Al GaN/GaN异质结界面陷阱态密度略微增加。这与氢处理后双栅器件表面泄漏电流减小和体泄漏电流增加的现象相符合,证明了异质结界面H+离子的存在。随后开展了氢处理GaN HEMT器件在电应力下的退化机理研究。研究中分别开展关态高场/半开态/开态应力实验。关态高场应力使氢处理器件反向栅泄漏电流和关态漏电流增加,退化量随栅压绝对值的增加而增加。这可解释为高场应力下陷阱的脱氢行为。开态应力导致氢处理器件阈值电压正漂,正漂量先快速增加然后达到饱和。为了探究开态应力下氢处理器件阈值电压正漂的机理,开展了漏压为0V的相同栅压偏置实验。结果表明氢处理后器件异质结界面附近存在大量的H+离子陷阱,正栅压下沟道电子填充H+离子陷阱而造成了器件阈值电压的正向漂移。进一步研究发现,开态应力下器件的阈值电压正漂量随栅压的增加而增加,栅压增加会使沟道内载流子数目增加、纵向电场减弱,导致发生热载流子效应的几率增加。此外,开态应力下器件的阈值电压正漂量还随漏压的增加而增加,漏压增加会使横向电场增强,使得载流子溢出沟道几率增加。在半开态应力下,器件同时表现出泄漏电流的增加和阈值电压的正漂,此时器件电学特性的变化是上述多种机制共同作用的结果。本论文的研究成果为分析氮化镓HEMT器件在氢气氛围下的退化提供了重要参考,进而可为器件在氢气环境下的可靠性提升提供重要帮助。
其他文献
Petri网作为一种成熟的数学工具,因其在系统行为描述方面的优势,被广泛应用于自动制造系统的建模和分析。在自动制造系统中,不同加工进程对资源的竞争引起的死锁可能会严重威胁系统的生产效率和安全。针对该问题,学者从结构和可达图两方面进行研究,提出了许多基于Petri网的死锁控制策略。然而大部分研究忽略了资源的可靠性以及事件的可控性和可观性。系统中不可靠资源以及不可控和不可观事件的存在可能会造成无法预料
货机货物装载系统是保障货机航空货运业务能力的核心系统之一,其货舱装载控制系统是实现货物装卸载自动化的关键因素,直接影响着货物装卸载效率。在“一带一路”倡议和经济“国内国际双循环”政策的促进下,我国航空货物运输业的发展进入黄金期,新货运飞机和飞机客转货改装市场也随之扩张,货机货物装载系统相关技术的国产化需求日趋迫切。本文以货机货舱装载控制系统控制器设计为目标,针对货运系统存在的被控对象数量多、信息交
β-Ga2O3是近年来引起广泛关注的半导体材料,高达4.6-4.9 e V的超宽带隙,让其在功率器件、日盲紫外探测器、高功率电力电子器件、气敏传感器等器件中有着广泛的应用前景。然而,金属和β-Ga2O3的接触界面间的结构和导电机制仍尚未研究清楚。本文以金属Ti和β-Ga2O3材料为研究目标,从β-Ga2O3材料的基本物理特性着手,首先采用磁控溅射法和快速热退火制备了具有欧姆接触的Ti/β-Ga2O
相控阵(Phased Array)是一种天线单元相位可控的天线阵列技术,通过天线阵列单元来实现电磁波束的接收和发送。由于具有工作带宽大、抗干扰能力强和探测精度高等多种优势,相控阵技术被广泛的应用于高精尖军事领域和民用领域。相控阵系统是一个由T/R模块、馈电网络和数字模块等子模块构成的复杂系统,每个子模块的性能都会影响到整个系统的功能。增益控制模块作为构成T/R模块的关键部件,具有补偿不同通道之间增
高压电力电缆作为电力系统的重要设备,被广泛应用于建筑、制造、通信等领域。但电力电缆会存在制作工艺不良、安装运输不当和绝缘层老化等问题,从而导致其绝缘故障的产生。研究发现,电力电缆的局部放电现象能反映其绝缘受损程度。本文在分析了局部放电产生原因及形成过程的基础上,建立了局部放电模型并进行仿真。针对传统模式识别算法输入特征有限、识别过程繁琐等问题,研究了一种基于卷积神经网络的局部放电模式识别算法,并对
太赫兹技术在雷达系统、生物医学、探测和通信等领域展现出巨大的应用潜力。太赫兹辐射源作为太赫兹技术中的重要一环,是当下国际重点研究课题,而基于半导体材料的太赫兹固态源更是其中的研究热点。第三代半导体材料的代表氮化镓(GaN)由于高电子迁移率、大的禁带宽度等适用于高频大功率的独特品质而在太赫兹领域备受关注。目前已有研究表明GaN基高电子迁移率晶体管(HEMT)中存在耿氏振荡,尽管相关研究仍旧很少,且器
随着现代医疗数字化和智能化的快速发展,生物信号的采集需求越来越大,对生物信号采集和处理水平的要求也越来越高。由于生物信号频率较低、幅度较小的特点,在生物信号采集系统中,一般采用低速高精度的模数转换器(ADC)进行采样和量化。另外,生物信号采集系统对便携性要求较高,因此对功耗和体积也有严苛的要求。低速、低功耗、高精度的模数转换器是实现生物信号采集系统最关键的单元之一,其性能对系统功能具有重要影响。S
电子设计自动化对于集成电路设计的重要性不言而喻,验证遍布设计流程的各个环节且成本占比最高。基于多FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)系统的原型验证和硬件仿真具有速度快、容量大等特点,目前被广泛应用于超大规模集成电路的逻辑验证。多FPGA系统的编译过程决定着最终性能,电路划分、系统级布线和TDM(Time Division Multiplexi
氮化镓(GaN)材料具有宽带隙、高击穿电场和耐高温等优势,在高频、高压和高温等领域具有广阔的应用前景。尤其是GaN材料还表现出优异的抗辐照特性,使GaN基高电子迁移率晶体管(HEMT)在空间应用中具有突出的应用潜力。然而,前期研究发现,在空间环境中GaN HEMT器件受到高能粒子辐照后会发生单粒子效应(SEE),严重制约了其在空间环境中的应用。因此,本文基于Silvaco TCAD工具对GaN H
随着无线通信系统向高数据传输速率,大数据量的方向不断发展,太赫兹波段因具有超宽的频带资源获得了众多学者的关注。带通滤波器是通信系统中重要的无源器件,对于太赫兹滤波器的研究具有重要意义。基于第三代半导体材料SiC的有源器件已经应用于新能源汽车,5G通信基站等领域,具有优异的功率和高频特性,这些优点使得SiC材料同样可以应用于无源器件的设计中。当前主流高频滤波器主要基于LTCC,CNC和PCB等工艺,