论文部分内容阅读
“九层之台,起于垒土”,古人非常重视建筑物基础的重要性。时至今日,随着越来越多的九层之台或者十层之台甚至百层之台的修建,工程项目对地基的要求也就越来越高。时常会遇见各种不良地质现象,如:溶洞、滑坡、软土等,都会给高层建筑物地基带来影响和破坏,产生不均匀沉降甚至坍塌,这将会带来极大的经济损失和社会负面影响。贵州都匀某建筑,因未查明场区工程地质条件,自修建开始便发生沉降,在未对其进行基础托换前,建筑物为东北角最大沉降量达166.01mm,而在建筑物西南角则出现了2~3mm的上升。这种“跷跷板”的现象表明建筑物不均匀沉降极其严重。因此本文以此为案例,通过钻孔资料摸清筏板地基下的地层信息,并结合室内试验得到岩土体的物理力学性质,进而分析该高层建筑物发生不均匀沉降的原因。另外采用全自动静力水准仪、IBIS-L地形微变监测系统、应变仪等监测手段获取建筑物沉降、变形、应力等变化规律。综合建筑物的变形特征和不均匀沉降原因采取针对性的施工方案,并提出了锚杆静压桩和SJP材料水泥浆液联合的地基托换技术。其次通过数值模拟方法分析了建筑在天然状况下的沉降特征,同时也模拟基础托换后建筑物的沉降和变形特征。最后,通过监测数据、定量计算和数值模拟成果对基础托换效果进行综合评价,并结合建筑物沉降过程,对高层建筑物沉降机理进行分析。主要研究成果如下:(1)通过钻孔等勘探资料,发现建筑物筏板地基下发育有一定规模的溶蚀带(溶洞群)和软土,且场地东北部溶洞发育较密集,软土也呈现东北部厚,西南侧薄的特征;(2)通过基本物理力学试验,获取研究区软土和基岩的物理力学参数,为建筑物沉降量计算和数值模拟提供基本参数;(3)根据现场调查结果结合建筑物各项监测资料显示:(1)建筑物在2017年1月~2018年6月(地基托换加固前),最大沉降量出现在东北角JC-10监测点,并出现了一侧沉降一侧上升的“跷跷板”的现象,且建筑物东部的沉降量远远高于中部及西部的沉降量;(2)墙体裂缝具有一定的方向性,北侧墙上的裂缝倾向W,南侧墙的裂缝倾向E;且距离最大沉降点越远,裂缝约发育,其长度越长,宽度越宽,倾斜角度越小,渗水比例越高;(3)剪力墙的最大应变出现在最大差异沉降点的直线(东北角与西南角)上;(4)建筑物表观位移在建筑物完成基础托换加固工程前处于一直增长的趋势,待基础托换完成后,各监测点保持稳定;(4)结合地层信息和监测数据,该栋建筑物的不均匀沉降的原因与地下溶蚀带及溶洞的发育、场地下软土不均匀分布以及地下水位的变化有关,其中地下水对沉降量及沉降速率影响最为明显。(5)针对该栋建筑物地质结构以及沉降原因,将SJP材料水泥浆液结合锚杆静压桩运用到基础托换技术中,并取得了良好的工程效果;(6)Flac3d模拟建筑物天然沉降发现:建筑物顶部位移变形具有放大效应,越靠近建筑物上部其沉降量越大,地基土沉降表现越靠近地表沉降量越大,越靠近建筑物东部沉降量越大;Flac3d模拟建筑物基础托换加固后,东西两侧差异沉降较小;基地附近应力分布较为均匀,塑性区主要出现在筏板地基东西两侧与岩土交界处,另外在东西两侧墙角处也有一定范围的塑性区,另外,钢管桩底部出现较大的压应力;(7)结合数值模拟、定量计算以及后期监测数据,建筑物在基础托换加固后,保持稳定状态,反映锚杆静压桩和注浆抬升加固方案效果良好。另外结合有效应力原理对建筑物沉降过程作出了分析。