【摘 要】
:
随着化石能源的大量消耗,人类文明的发展受到能源危机与环境污染等问题的严峻挑战。为应对挑战,以风能和太阳能为代表的可再生能源得到大规模开发利用。目前,开发利用可再生能源的主要途径是并网发电。这其中,并网逆变器是关键设备。为了在复杂电网环境下安全稳定运行,无源性概念被引入到并网逆变器的相关研究中。本质上,基于无源性设计的目的是在全频段内消除并网逆变器输出阻抗出现负阻成分的风险。本文旨在探索一套兼具通用
论文部分内容阅读
随着化石能源的大量消耗,人类文明的发展受到能源危机与环境污染等问题的严峻挑战。为应对挑战,以风能和太阳能为代表的可再生能源得到大规模开发利用。目前,开发利用可再生能源的主要途径是并网发电。这其中,并网逆变器是关键设备。为了在复杂电网环境下安全稳定运行,无源性概念被引入到并网逆变器的相关研究中。本质上,基于无源性设计的目的是在全频段内消除并网逆变器输出阻抗出现负阻成分的风险。本文旨在探索一套兼具通用性与实现便捷的LCL型并网逆变器无源性实现方案,其主要研究内容如下:首先,本文以LCL型并网逆变器为研究对象,分别建立了逆变器侧电流反馈和并网电流反馈两种控制方式的数学模型,指出了并网逆变器的稳定性可以分为内部稳定性与外部稳定性,基于阻抗稳定性判据,得到了复杂电网环境下并网逆变器稳定运行的无源性条件,阐明了无源性系统的基本性质。其次,基于无源性条件,分别推导了逆变器侧电流反馈和并网电流反馈两种控制方式的最优电容电流反馈有源阻尼系数,指出虽然这些最优阻尼系数都能实现并网逆变器全频段的无源性,但它们在六分之一采样频率(ωs/6)处的无源性都是临界的,很容易被实际中无法避免的主电路参数波动所破坏。接着,提出了一种兼具通用性与实现便捷的并网逆变器输出阻抗串联校正策略。通过加入一个与电流调节器级联的校正环节,构建一个与并网逆变器输出阻抗串联的虚拟阻抗。该虚拟阻抗可以有效地重塑输出阻抗,改善其在ωs/6附近的无源性,增强其抵御主电路参数波动影响的能力。研究发现:对于逆变器侧电流反馈控制方式,合适的校正环节是超前校正环节。对于并网电流反馈控制方式,合适的校正环节取决于逆变器侧电感与滤波电容的谐振频率(ωL1C)和ωs/6的大小关系。当ωL1C>ωs/6时,应加入超前校正环节;当ωL1C<ωs/6时,应加入滞后校正环节;当ωL1C=ωs/6时,加入任何校正环节都会破坏系统的无源性,因此应尽力避免。为此,建议在设计LCL滤波器时,根据逆变器侧电感与滤波电容的波动范围设置一个ωL1C的禁止区域,让其不要接近ωs/6。进一步地,揭示了PR调节器的谐振部分对系统无源性的影响,指出在需要超前校正环节的场合,它会增加补偿的负担;在需要滞后校正环节的场合,它会减轻补偿的负担。最后,搭建了一台6k W单相LCL型并网逆变器原理样机,对本文的理论分析进行了实验验证。
其他文献
目的:放疗是目前宫颈癌的主要治疗手段之一,然而,放疗抵抗是宫颈癌治疗失败的主要原因。目前对宫颈癌放疗敏感性的认识仍有许多未解之处。TMSB10(胸腺肽10),一种小的生物活性肽,在多种肿瘤的发生发展中发挥重要作用。但TMSB10与肿瘤放疗敏感性的有关研究甚少。本研究旨在探讨TMSB10对宫颈癌细胞放疗敏感性的影响及其内在调控机制,为宫颈癌的放射增敏提供新的理论基础及分子靶点。方法:1、利用GEPI
在实际生活中,许多问题都多多少少伴有随机现象。为了让数学模型更好地反映实际问题,我们在能把实际问题刻画为偏微分方程反问题的时候,多半加上随机项形成随机偏微分方程反问题,因此随机偏微分方程的反问题与更多实际问题紧密的联系了起来。这使得更多的学者开始投身于随机偏微分方程反问题的研究中。本文讨论的是一类带有乘性噪声的随机抛物型偏微分方程逆源问题,其中初边值条件均为零,目的是利用末端时刻的观察值即终值反演
作为连接可再生能源发电单元与电网的桥梁,LCL型并网逆变器凭借其谐波抑制能力强、体积小和功率密度高等优点,广泛应用于分布式发电系统中。为了保证并网系统安全稳定运行,本文对LCL型并网逆变器的数字滤波器有源阻尼策略和自同步锁相技术展开研究,主要研究工作如下:建立了基于网侧电流反馈控制和数字滤波器有源阻尼的并网逆变器数学模型,揭示了数字滤波器阻尼LCL谐振的本质,即通过数字滤波器提供的幅值或相位补偿改
活塞环-缸套作为内燃机中最关键的摩擦副,其润滑状态直接影响着内燃机的可靠性和工作效率。由于磁纳米流体具备出色的粘度特性和磁响应能力,在润滑领域表现出较大的研究与应用价值。本文基于磁纳米流体的流变特性,开展磁纳米流体摩擦学特性研究,并探讨其在内燃机活塞环-缸套摩擦副中的润滑规律及作用机理,具有重要的理论研究意义与工程应用价值。本文基于化学共沉淀法制备了Fe3O4纳米颗粒。经测试表征,所制备Fe3O4
基于质子束独特的布拉格峰剂量分布特性,质子治疗可实现对周边组织损伤更小的精准肿瘤放疗,是当前先进的放射治疗方法。旋转机架可实现多角度质子束照射,是质子治疗装置的核心部件之一。采用常温磁铁的机架束流线是当前的主流方案,但存在重量及体积偏大的问题,机架总重通常超过150吨;采用超导磁体技术的轻量化机架是未来发展的趋势。本论文完成了一套基于交变梯度斜螺线管超导磁体(AG-CCT)及局部消色散方案的超导机
从细观层次上看,混凝土是由骨料、砂浆以及两者之间的界面过渡区(Interfacial Transition Zone,简称ITZ)这三相构成的。与砂浆基质相比,ITZ通常具有较大的孔隙率,较高的水灰比和渗透性,以及较低的强度、韧性和弹性模量。它的力学性能严重影响混凝土的宏观断裂特性,且一定程度上决定着混凝土受载时的破坏形态。因此,开展ITZ的改性实验研究并基于改性方案研究ITZ改性对混凝土断裂特性
随着电子信息技术的不断进步,新一代电子元器件朝着高频化、集成化方向快速发展,电磁污染以及散热问题亟待解决。通过在电子元器件上贴装导热、吸波功能一体化聚合物基复合材料可有效减弱电磁干扰,移除多余热量。但在目前的报道中,兼顾导热吸波性能提升方法及机理分析的研究尚为不足。针对研究现状,本论文通过改变填料形貌及引入铝蜂窝骨架,制备出具有较高导热吸波性能的复合材料。具体工作内容如下:(1)以球形羰基铁粉、氧
随着世界经济的高速发展与工业水平的不断进步,各国汽车保有量也在持续上升。汽车工业的高速发展在促进人类社会进步的同时,不可避免地加剧了环境污染与能源短缺,因此各国法律法规对污染排放的要求越来越严格。传统的车载氧传感器只能实现对尾气中氧气含量的测量,却无法满足法规对于废气中氮氧化物的检测要求,而能够精确、快速检测氧浓度,实现空燃比与氮氧化合物浓度测量的氮氧传感器在控制尾气排放中将起到十分关键的作用。因
随着能源短缺和环境污染等全球性问题日益突出,可再生能源直流输电成为电力系统发展的主要方向。由于真空介质具有环境优好的优点,使得真空断路器逐渐成为中压配电领域的主要开断装置。燃弧过程真空电弧的形态分布特征会影响等离子体的输运特性,同时是弧后介质强度的恢复过程的初始条件,直接决定断路器能否成功开断故障电流,是设计断路器参数的重要考虑要素。相比于工频电弧,快速过零工况下等离子体往往来不及扩散,对弧后介质
跨视角图像地理定位任务是将描述未知地点的无人机视角或者地面视角的查询图像与参考数据集中带有GPS标签的卫星航拍图像进行匹配,从而确定查询图像的地理位置。然而,不同视角的图像之间存在的视觉差异给跨视角图像地理定位任务带来了挑战。本文针对无人机和地面两种视角下的图像地理定位任务,从特征提取和视角转换两个方面对跨视角图像地理定位任务进行了研究,主要研究内容如下:对于无人机视角图像地理定位任务,本文提出一