论文部分内容阅读
集成光学陀螺具有小体积、低成本和高精度的发展潜力,是光学陀螺集成化发展的重要方向。本文对谐振式集成光学陀螺声光移频检测中涉及的关键问题进行了理论和实验研究,分别从检测方式、噪声抑制方法、闭环检测技术、信号处理方法、软硬件设计、实验方案设计等方面开展了工作。论文主要研究内容和取得的研究成果包括如下几方面。(1)采用原子钟与二级数字锁相技术,结合48位直接数字频率合成技术,研制了数字高精度声光移频驱动器,得到声光移频输出精度高于1Hz,移频频率稳定性小于0.37Hz。设计了移频驱动器通用数字总线接口与陀螺检测软件进行数据交互。设计了二进制频移键控和二进制相移键控数字调制功能,为实现谐振式集成光学陀螺的声光调制提供了技术条件。为抑制声光移频器输出功率谱不平坦造成的陀螺检测误差,对声光移频器的输出功率谱进行了平衡校正。(2)推导了谐振式集成光学陀螺分数阶PI~λD~μ控制系统的开环和闭环传递函数。采用幅值裕量和相位裕量法进行了谐振式光学陀螺分数阶PI~λD~μ鲁棒控制器的设计。(3)设计了抑制谐振式集成光学陀螺中背向散射和偏振串扰噪声的方案。在陀螺的两个支路上分别使用一个声光移频器,对两个支路光波进行不同频率的移频,从而将背散噪声频率移到陀螺解调频率带宽范围外。在陀螺的两个支路分别使用一个光纤起偏器和一个电控偏振控制器,在保证高偏振消光比的同时,还可以通过调整电控偏振控制器,使顺逆时针光路的解调曲线重合。实验测试证实了两种噪声抑制方法的有效性。(4)首次在谐振式集成光学陀螺中采用了分数阶数字PI~λD~μ控制技术,采用Al-Alaoui生成函数和连分式展开直接离散法将分数阶PI~λ控制器的微积分算子进行离散化近似,得到谐振式光学陀螺控制系统的一阶和二阶分数阶PI~λ控制器的传递函数表达式。计算分析了谐振式光学陀螺分数阶PI~λ控制器的响应特性和噪声抑制特性。将分数阶PI~λ控制器应用于谐振式集成光学陀螺检测系统,完成了陀螺闭环锁定测试。理论和实验工作均显示分数阶控制器在提高谐振式光学陀螺控制系统的抗干扰特性、改善系统的动态响应和参数调整灵活性等方面具有明显的优势。(5)提出并实现了激光器-声光移频器联合的Pound-Drever-Hall(PDH)闭环锁定方案。利用调谐范围大但移频精度低的激光器对陀螺进行粗锁,利用移频精度高但移频范围窄的声光移频器对陀螺进行精细锁定。该方案可同时发挥可调谐激光器和声光移频器的优势,理论上陀螺的锁定精度可以由只用激光器锁定时的几kHz,提高到1Hz以上。实验测量显示,采用激光器-声光移频器联合闭环锁定方案,在零偏稳定性和随机游走等噪声特性上都优于只用激光器锁定的方案。(6)结合上述高精度声光移频驱动技术、噪声抑制方案、分数阶PI~λ反馈控制方案,以及激光器-声光移频器联合的PDH锁定方法,搭建了谐振式集成光学陀螺实验系统。基于“生产者-消费者”架构设计了谐振式集成光学陀螺控制和检测软件。实验完成了陀螺旋转角速度检测,以及标度因数、零偏和零偏稳定性等参数的测试。论文工作验证了在谐振式集成光学陀螺中采用声光移频检测的可行性,以及论文中设计并体现了各项软硬件技术方案的合理性,为陀螺信号的调制和检测过程中使用声光移频技术提供研究基础。