论文部分内容阅读
伴随着高光谱成像光谱仪像向更高空间和光谱分辨率的快速发展,对现有的数据处理方法提出了新的挑战,需要发展新的数据处理方法。作为机器学习中最有效的方法之一,集成学习使用多个学习机(算法)来解决同一问题,能够显著地提高学习系统的准确性和稳定性。本文从集成学习的理论基础出发,将集成学习引入到高光谱遥感影像分类中,系统研究了旋转森林、监督/半监督特征提取集成分类和光谱-空间特征集成分类等问题。论文主要内容和结论如下:1)将旋转森林应用于高光谱遥感影像分类,运用了不同特征提取算法,实现了基于独立成分分析、最大噪声分离和局部线性判别分析的旋转森林,并对应用不同特征提取算法的旋转森林分类器的性能进行分析。试验结果表明旋转森林的性能优于常规集成学习算法(Bagging等),基于主成分分析和独立成分分析特征提取算法更为有效。2)将半监督/监督概率主成分分析用于高光谱遥感影像分类特征提取,从不同数据、不同数量的标记样本和未标记样本、计算时间等方面对半监督/监督概率主成分分析与其他高光谱遥感影像特征提取算法进行比较分析,结果证明半监督/监督概率主成分分析提取出来的分类特征能够得到精度较高的分类结果。在此基础上,提出了通过半监督概率主成分分析、监督概率主成分分析和无参数加权特征提取三种监督/半监督特征提取算法,构建监督/半监督特征提取的并行/串行集成分类策略,分类结果表明基于监督/半监督特征提取集成策略能够有效提高高光谱遥感影像分类精度。3)建立了基于半监督特征提取和图像分割、马尔科夫模型的光谱-空间特征综合分类模型,图像分割分别选择聚类分割、分水岭分割和Mean-shift分割。马尔科夫模型通过最小化局部能量函数,采用模拟退火算法,能够有效的使邻近像元聚集。光谱-空间特征综合模型使高光谱遥感影像分类精度得到显著改善,并且能够降低遥感影像分类的噪声,分类结果更接近于真实地物分布。4)结合理论研究,研发了高光谱遥感影像集成学习分类系统,该系统包含遥感影像基本处理、分类、聚类、分割、训练层和特征层集成、并行/串行集成、差异性测度和光谱-空间集成等功能,以城市不透水面层提取分析为例,分析了该系统在实际应用中高光谱遥感信息处理的优势。