论文部分内容阅读
缺陷类型识别是定量超声无损检测中重要的基础性问题。随着超声无损检测技术朝着高可靠性、高精度、高实时以及定量化方向发展,研究应用于在线超声检测的缺陷类型识别技术具有日益重要的学术意义和工程价值。虽然通过超声成像重构缺陷几何轮廓的方式能够实现对缺陷类型识别,但需要等待耗时的全局超声扫描和数据合成的过程,其实时性不能满足高速的在线检测需要。而非成像式超声检测缺陷类型识别方法直接从超声反射回波信号中提取特征参数,通过分析特征参数与缺陷类型之间的对应关系实现对缺陷类型识别,由于不需要等待全局超声扫描和数据合成,该方法具有较高的实时性,特别适用于在线超声检测的场合。在实际应用中,由于存在材料结构噪声对信号的干扰以及小样本条件下先验知识缺乏等困难,非成像式超声检测缺陷类型识别的准确性和可推广性受到了严重影响。针对目前存在的这些问题,本论文对非成像式超声检测缺陷类型识别中的关键技术,包括结构噪声消除、缺陷特征提取与类型识别进行了系统的研究,提出了基于小波包变换的时频邻域自适应消噪方法、基于SFFS搜索的时频优选特征提取算法以及两种基于支持向量机的融合决策识别方法法,并分别采用人工缺陷和石油套管自然缺陷对上述方法的可行性和有效性进行了验证。第一章,论述非成像式超声检测缺陷类型识别的重要意义,综合国内外关于非成像式超声检测缺陷类型识别关键问题的研究现状,分析当前研究中存在的问题,确定进一步研究的方法路线。第二章,研究超声反射回波信号的组成、分布特点和平稳特性,分析典型人工缺陷的超声反射回波信号在不同空间域上的信息特征,为后续的信噪分离、特征提取和类型识别工作提供理论基础。第三章,在分析结构噪声分布特点的基础上,提出基于小波包变换的时频邻域自适应消噪方法。通过仿真信号和实测信号的消噪实验,验证该方法在提高信号信噪比和抑制信号失真方面的有效性。第四章,确定超声反射回波信号的多特征提取框架,对四种相互独立的传统特征提取方法进行研究,并给出具体的实现算法。针对传统特征提取方法缺乏量化依据的问题,提出基于小波包分解、Fisher准则和SFFS搜索算法的时频优选特征提取算法,并采用可分性测度对上述特提取方法的有效性进行评价。第五章,针对小样本条件下超声检测缺陷类型识别的困难,提出两种基于支持向量机的融合决策识别方法,分别应用于缺陷类型框架已知和未知的场合。通过对人工缺陷进行类型识别,验证上述识别方法的有效性。第六章,将所提出的方法应用于石油套管自然缺陷的类型识别,研究信号消噪和特征提取对识别正确率的影响,验证多特征融合决策识别方法的识别能力和泛化能力,分析整个识别过程的时间耗费以及应用于石油套管在线超声检测的可行性。第七章,对论文的主要内容、研究结果和创新点进行总结,并对以后的工作进行展望。