Rhn-1(TM)(n=2-8)团簇结构和电子性质的密度泛函理论研究(TM=Cr,Mn,Fe,Co,Ni,Cu)

来源 :新疆大学 | 被引量 : 0次 | 上传用户:richieli333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文应用基于密度泛函理论的第一性原理DMol软件包系统研究了Rhn-1(TM)(n=2-8)(TM=Cr,Mn,Fe,Co,Ni,Cu)混合团簇的几何结构,电子结构和磁性。通过分析讨论Rhn-1(TM) (n=2-8) (TM=Cr,Mn,Fe,Co,Ni,Cu)的平衡几何结构和电子结构、磁性、HOMO-LUMO的能隙、二阶差分能和碎裂能,得出Rhn-1(TM)(n=2-8)(TM=Cr,Mn,Fe,Co,Ni,Cu)的磁性和能量相关的变化规律。1.相比较纯Rhn(n=2-8)团簇,TM原子嵌入的Rhn-1(TM)混合团簇的几何结构进行了重构。结构演化的总趋势是嵌上TM原子的Rhn-1(TM)结构与只单纯在Rhn团簇中替换一个Rh原子的结构类似,结构稍微发生畸变。2.从碎裂能和二阶差分能分析,Rh3Cr,Rh5Mn,Rh3Fe和Rh6Fe,Rh3Co和Rh5Co,Rh3Ni和Rh5Ni,Rh5Cu等结构较稳定,可视为幻数结构团簇。3.从磁矩方面分析,对比纯Rhn团簇,对Rhn-1Cr团簇,Rh5Cr的磁矩变化最大,增加了7μB。对Rhn-1Mn团簇,Rh3Mn的磁矩变化最大,增加了4μB,而Rhn-1Mn(n=2,5,6)增加了2μB。对Rhn-1Fe体系来说,Fe原子嵌入,Rhn的磁矩明显增大,Rh6Fe的磁矩变化最大,增加了11μB。对Rhn-1Co体系,同样磁矩变化明显,Rh6Co的磁矩变化最大,增加了10μB;Rhn-1Ni团簇体系,Rh6Ni的磁矩高出5μB,其它的高出1μB和3μB。Rhn-1Cu体系,只有n=4、6、8时,Rhn-1Cu的磁矩比Rhn高,均高出2μB。Rhn-1(TM)(n=2-8)(TM=Cr,Mn,Fe,Co,Ni,Cu)团簇磁矩大小还受团簇构型的影响。磁矩增加最明显的是掺杂Fe,Co,Ni的团簇。4.从HOMO-LUMO能隙分析,过渡金属原子的嵌入普遍增强了团簇的化学反应活性。
其他文献
本文分两章.第一章分两节.第一节回顾排队论的历史,第二节中先介绍补充变量方法,然后提出本文要研究的问题.第二章共分三节.第一节中首先介绍具有N策略和负顾客的反馈抢占型M/G/1重试可修排队模型,接着引入状态空间,主算子及其定义域,然后将该模型转化成Banach空间中的抽象Cauchy问题.第二节中研究该排队模型的适定性.运用泛函分析中的Hille-Yosida定理和Phillips定理证明该模型存
本文共分二章.第一章分二节.第一节回顾可靠性理论的历史.第二节中首先介绍补充变量方法,然后提出本文要研究的问题.第二章共分二节.第一节中首先介绍由一个可靠机器、一个不可靠机器和一个有限容量的缓冲库构成的系统的数学模型,接着引入状态空间、算子及其定义域,然后将该模型转化成Banach空间中的抽象Cauchy问题,最后介绍其他学者关于此模型的研究成果.第二节中研究该模型的主算子生成的C0?半群的性质,
自2016年《中医药发展战略规划纲要》提出"要将中医药基础知识纳入中小学传统文化、生理卫生课程"以来,地方政府相继出台相应政策支持中医药文化的发展,中医药文化教育在广大中小学校园中有着新发展、新机遇。近年来,研学旅行在青少年中掀起热潮,成为推进素质教育的重要抓手。将研学旅行与中医药文化教育结合的想法,既能宣扬中医药文化,也能深化研学旅行的文化内涵。本文将从研学旅行政策、
期刊
种群在其生命过程中的某个年龄阶段所具有特定的生理特征(如大多数种群只有在成年阶段才会生育,捕食等)是自然界最普遍的现象之一,从而成为国内外许多学者最感兴趣的研究内容.而本文正是在他人研究的基础之上,对具有阶段结构模型进行更广泛更深入的讨论,其中包括:非自治的具有阶段结构(阶段结构针对于食饵)的离散时滞周期捕食-食饵模型的周期解存在性的研究;非自治的具有阶段结构(阶段结构针对于捕食者与食饵)和双时滞
本文我们主要考虑一个连通图能否分解为一系列给定边(点)数的连通子图的问题.首先给出了在树T上能够3-边分解的充要条件C1(T-υ)≥C2(T-υ),这里的Gi(H)表示图H中连通分支满足顶点数模3等于i的连通分支的个数.然后又证明了每个连通图有{3,4}-边分解.设G为一个图.κ(G)表示G的连通度.用G×H表示图G和图H的Kronecker积.G×H的点集为集合V(G)×V(H),其中点(u,x
匹配理论是图论研究的重要内容之一,而且是一个具有生机和活力的研究领域.它不仅具有很强的应用背景,而且在过去的几十年中,它是快速发展的组合论中许多重要思想的源泉.1998年原晋江[10]提出了导出匹配可扩图的问题.如果图G的每一个导出匹配都包含在G的一个完美匹配中,我们则称图G是导出匹配可扩图.导出匹配可扩性问题已经吸引了很多图论学者致力于它的理论研究.关于导出匹配可扩图的研究结果,我们可以在[10
本文分两章.第一章分两节.第一节回顾排队论的历史,第二节中先介绍补充变量方法,然后提出本文要研究的问题.第二章共分两节.第一节中首先介绍服务员强制休假的M/G/1排队的数学模型,接着引入状态空间、主算子及其定义域,然后将该模型转化成Banach空间中的抽象Cauchy问题.第二节中研究该排队模型的适定性.运用泛函分析中的Hille-Yosida定理,Phillips定理和Fattorini定理证明
许多网络,如运输网络,道路网络,电网络,通讯网络以及服务网络等都可以被模型化为图.研究网络的可靠性(网络的某些部件发生故障仍可以工作的能力)的问题越来越引起人们的重视.传统的连通度有其明显的缺陷,为此,人们提出了更高阶的连通度的概念,如super-κm, super-λm, m-限制性点(边)连通度等,其中m是整数.本文主要研究了一般图的super-κ3,λ3-optimal, super-λ3.
设图G是一个简单图.图G的线图L(G)以图G的边集作为顶点集, L(G)的两个顶点相邻当且仅当它们在图G中相邻.Chartrand等[2]引进了一类变换图Jk(G),称作图G的k-跳图. Jk(G)的顶点集为G的所有k条边的子图构成;两个顶点H和F在Jk(G)中相邻当且仅当G中存在四个不同的顶点u, v, w和x使得uv∈E(F), wx∈E(G)?E(F)并且H = F ?uv+wx.显然, J
利用图来研究互联网络的拓扑结构已经被计算机科学工作者广泛接受和运用,图论中(边)连通度的概念是用来研究网络可靠性的一个重要参数,它能准确的刻画小规模网络的容错性.但是,对于大规模网络而言传统连通度就容易低估其可靠性.随着大规模网络的发展,我们有必要改进传统连通度的概念.基于传统连通度的不足,Harary在文献[4]中介绍了条件连通度的概念.设G是一个无向简单图, P是一个图性质. Harary在[