论文部分内容阅读
随着社会经济的发展和人们环保意识的提高,各国开始限制聚氨酯制品中VOC或HAP的含量,溶剂的挥发和残留会对施工人员和消费者的健康构成严重的威胁,溶剂型聚氨酯材料的使用受到了一定程度的约束,如在家装、纺织服装业等。与此同时,水性聚氨酯、无溶剂型聚氨酯、聚氨酯基纳米复合材料等作为新材料正逐步进入人们的视野。在聚氨酯材料领域中主要有脂肪族型和芳香族两大类,由脂肪族异氰酸酯制备的聚氨酯材料具有耐黄变、柔韧性较好,但强度、耐磨性能不如芳香族的。4,4’-二苯基甲烷二异氰酸酯(MDI)以其分子量大、饱和蒸汽压低、毒性低、价格低廉,而且MDI对称的分子结构使采用MDI制备的水性聚氨酯漆膜强度、耐磨性及弹性优于TDI,而且干燥迅速,市场前景广阔。本文第一章以MDI基聚氨酯材料为主线,分别介绍了水性聚氨酯及其功能改性的研究进展以及在防水透湿纺织涂层胶方面的应用情况,另外又介绍了聚氨酯基纳米复合材料的研究进展,改性机理和以后的发展趋势;然后分别介绍了MDI基水性和溶剂型聚氨酯材料的研究现状、制备方法以及工业应用情况。本文第二章以MDI、聚醚二元醇、二羟甲基丙酸(DMPA)等为主要原料合成了稳定的水性聚氨酯(WPU)乳液。通过FT-IR分析、粒度分析、拉伸试验、差示扫描量热仪分析(DSC)、热重分析(TGA)和吸水率等测试,再对水性聚氨酯胶膜的力学性能、耐热性能及耐水性能等进行研究,通过透射电镜(TEM)对刚制备和放置一年后的水性聚氨酯乳液进行微观形貌对比分析,考察了不同类型的聚醚二醇、扩链剂和交联剂等对水性聚氨酯性能的影响。研究结果表明:当用MDI、1,4-BDO、含4.0wt%的DMPA等作为硬段时,用N220作为软段合成的WPU,乳液稳定性好,胶膜吸水率低,断裂伸长率大,手感柔软、不粘且丰满;用PTMG作为软段制备的WPU的氢键化程度、结晶度和耐热性较好。本文第三章用有机硅对MDI基水性聚氨酯进行了改性,通过接枝共聚合成了单组分有机硅改性的水性聚氨酯乳液。用红外、核磁表征了水性聚氨酯的结构,核磁表明,有机硅已接到聚氨酯主链上;热分析表明,有机硅的加入降低了聚合物软段的玻璃化转变温度,提高了硬段的玻璃化温度和微观相分离,软段与硬段的相分离更加完善,而且还提高了聚合物在低温区域的耐热性;透射电镜表明,有机硅的加入在一定程度上影响了乳液的微观结构,有机硅在聚氨酯链段中呈梳状,随着疏水有机硅结构的引入,有机硅向表面迁移,虽然分散作用减弱导致乳胶粒径增大,但并不使胶粒结构发生明显的改变,仍能保持球形结构。通过对比几种有机硅改性剂对MDI基水性聚氨酯乳液的影响,并将制备的改性水性聚氨酯乳液外加其他助剂复配成水性织物涂层胶,应用于织物涂层整理,对其防水透湿的性能作了研究。该涂层胶兼有防水和透湿的功能,达到有机统一,能有效的弥补织物在这方面的不足。本文第四章用原位插层聚合法合成了一种有机改性高岭土-聚氨酯纳米复合材料。首先制备了有机插层改性的纳米高岭土,将它作为复合材料中的填料;然后用聚醚插层替代小分子有机溶剂制备聚醚-纳米高岭土复合物,最后加入异氰酸酯制得聚氨酯基纳米复合材料。通过FT-IR光谱分析、XRD衍射分析、热稳定性能分析、BET分析、SEM电镜分析、拉伸实验等测试分析,研究了纳米高岭土的改性效果和聚氨酯纳米复合材料的力学性能、耐热性等性能,以及纳米高岭土在聚氨酯基体中的分布情况。结果表明,纳米高岭土的改性用超声插层法处理的效果较好;改性纳米高岭土的加入量为3%时,纳米高岭土以剥离形态嵌入到聚氨酯基体中,使PUE软硬段相分离程度增加,使材料增强增韧;加入量较多时,则开始出现片层形态且有团聚现象。