【摘 要】
:
由新能源发电、负载和储能单元构成的直流微电网系统,具有变换器少,损耗小,无频率、相位问题等诸多优点。随着大量负载与变换器的持续接入,直流微电网的结构、控制策略也越来越复杂。其中,绝大部分闭环控制的电动机负载和变换器负载皆可视为恒功率负载,由于其特有的负阻抗特性,在扰动发生时会放大干扰信号,严重影响系统的稳定性,直流微电网的稳定运行问题愈发引起关注。储能单元是直流微电网必不可少的环节,可平抑新能源发
论文部分内容阅读
由新能源发电、负载和储能单元构成的直流微电网系统,具有变换器少,损耗小,无频率、相位问题等诸多优点。随着大量负载与变换器的持续接入,直流微电网的结构、控制策略也越来越复杂。其中,绝大部分闭环控制的电动机负载和变换器负载皆可视为恒功率负载,由于其特有的负阻抗特性,在扰动发生时会放大干扰信号,严重影响系统的稳定性,直流微电网的稳定运行问题愈发引起关注。储能单元是直流微电网必不可少的环节,可平抑新能源发电功率与负载用电功率的差额,维持母线电压稳定。蓄电池、超级电容和储能变换器构成的混合储能单元同时具有高能量密度和高功率密度的特点,大大提高了储能单元的工作性能和使用寿命,因而在微电网中应用极为广泛。作为混合储能单元的重要组成部分,并联储能变换器的控制策略对直流微电网系统的稳定性能影响极大。为了提高直流微电网系统的大信号稳定性,补偿恒功率负载的负阻抗特性,本文基于混合势函数方法,提出了混合储能单元的储能变换器并联系统的稳定控制策略。该稳定控制策略给出了蓄电池双向DC/DC变换器电流内环比例控制参数、超级电容双向DC/DC变换器功率外环比例控制参数、恒功率负载的功率、直流母线电压、稳压电容、用于功率分配的低通滤波器滤波时间常数、蓄电池侧电感、蓄电池充放电因子等参数的设计限制条件,为储能变换器并联系统的设计提供了重要参考依据。首先,根据控制策略和装置特性,分别建立恒功率负载模型、新能源发电单元模型和混合储能单元模型,由此可得直流微电网系统等效简化模型。接着,应用混合势函数方法建立了系统的大信号非线性能量模型,充分考虑并联储能变换器控制参数,应用稳定性定理推导得到储能变换器并联系统的稳定控制策略。最后,分别搭建仿真模型和实验平台进行验证,仿真结果证明了所得稳定控制策略的正确性。随着直流微电网系统的容量不断增加,储能单元的容量也不断增大,单个蓄电池储能变换器无法满足微电网的容量需求,因此本文进一步对含有n个蓄电池储能变换器和1个超级电容储能变换器的并联系统进行研究,建立n+1个并联储能变换器的大信号模型,推导其稳定控制策略,并通过戴维南定理对该稳定控制策略进行优化和改进。该稳定控制策略兼顾各电源出力比例对于系统稳定性的影响,使所得判据更加准确,更加符合实际情况。仿真和实验结果表明了推导得到的n+1个并联储能变换器的稳定控制策略的有效性。
其他文献
随着国家大力推进新能源技术,以风力发电、太阳能发电为主的分布式发电得到广泛应用。为了解决分布式电源与电网之间的协调控制问题,引入了微电网的概念,储能逆变器作为微电网的重要组成部分在微电网的控制中发挥了重要作用。本文从储能逆变器的角度出发,介绍了储能逆变器的组成和功能,对储能逆变器的并网控制策略、离网控制策略、调制方法及并离网运行模式的切换策略进行了深入研究,实现了对负荷的持续性供电。
随着科技的发展与进步,住宅和商业场所消耗的电量日益增多,电量的开源节流成为世界各国研究者的目标,研究环保、新颖的能量采集与存储技术,逐步取代传统的电池供能方式。在众多能源种类中,人体动能是一种有潜力的能量来源,近年来受到学者的广泛关注。本文针对大型商场等高人流量场合中人开关门运动产生的人体动能,提出一种双向双储能低频能量回收装置。该能量回收装置能将顺时针或逆时针两种旋转方向输入转换为单一旋转方向,
常规风电机组以追求最大输出功率为目标,这导致机组功率和系统频率解耦,进而引起电力系统惯量不和足和调频压力增加。基于虚拟同步发电机控制的双馈风力发电机(DFIG-VSG)能够增加系统的惯量和阻尼,进而提高系统频率稳定性。然而,由于传统DFIG-VSG提供的虚拟惯量和阻尼恒定,导致频率支撑和调节效果不理想。本文以含冗余储能的双馈型风电机组为对象,深入研究风电虚拟惯量和调频控制策略。论文的主要研究内容如
目前新能源发电设备大量接入电网,需要测量不同类型新能源发电设备的阻抗来进行并网稳定性分析。测量系统以Venable-7001频率响应分析仪为基础平台,设计了三相独立灵活配置的扰动信号发生电路以及基于通用串行总线(USB)接口的信号采集电路。通过LabVIEW设计了与系统硬件电路对应的图形化控制界面,方便用户下达操作指令和监控数据。该平台能够根据测量需要灵活调整扰动信号频率,并能够实时测量电压、电流
能源和环境危机促进汽车产业向新能源方向发展,纯电动汽车是绿色、无污染、环境友好型交通工具,是我国汽车产业战略化转型的主要方向。车辆行驶过程中,高频率、大幅度变化的充放电过程会导致锂离子动力电池的寿命加速衰减,限制了纯电动汽车的发展和应用。超级电容循环使用寿命长、大电流充放电能力强的特点可以和锂离子动力电池的高能量密度优势互补,锂离子电池/超级电容混合储能系统可以同时满足纯电动汽车对高功率和高能量的
相比传统电网,直流微电网具有分布式发电接入灵活、应用范围广、转换效率高等优点,有效解决了新能源发电消纳问题,因而受到了国内外学者的广泛关注。但是,作为一种新型电网结构形式,直流微电网存在能源利用率低、直流母线电压稳定性差等问题。通过源-储-荷共同参与直流微电网运行调节,是解决此问题的主要技术手段。本文以适用于偏远地区或独立发配电区域的光储直流微电网为研究对象,进行了协调控制方案和各微电网单元控制方
针对级联静止无功发生装置(SVG)并网运行时与电网及电缆线路谐振问题,基于阻抗分析法对级联SVG的序阻抗特性进行了分析,并研究了级联SVG与电网谐振的机理和抑制策略。首先阐述了级联SVG的主电路结构及基本控制,建立了级联SVG的频域模型;其次基于阻抗分析法建立了考虑控制环节在内的级联SVG序阻抗模型,基于序阻抗模型研究了级联SVG与电网交互谐振的机理;然后通过仿真软件和实际案例分析分别验证了所推导
近年来,城市轨道交通作为绿色公共交通在我国得到了前所未有的发展,而随着绿色环保理念的不断深入,目前轨道交通中的许多既有系统已经很难满足绿色环保的理念,特别是随着电力电子与储能技术的发展,以及车辆再生制动能量回收系统的广泛应用,使得车辆与地面供电系统的构成和能量关系更加复杂化。但是由于能够对车辆与地面供电各系统间的能量表示一体化模型并不完善,所以在城轨既有设备进行节能改造,以及地面再生制动能量回收系
随着新能源技术的不断发展和人们绿色低碳意识的不断提升,使得国内外能源研究重心逐渐向分布式光伏、风电等新能源方向转移。新能源发电具有随机性与间歇性,使得传统电网难以高效利用,于是一些学者提出了能源互联网概念。与传统电网相比,能源互联网采用了更全面的电力电子技术与通信技术,可将多种新型能源与传统能源相互联通,有效消纳新能源。电能路由器作为能源互联网中的核心装置,承担着电能变换与分配的作用,可实现能源互