石墨烯基新型人工电磁特异材料太赫兹吸收特性研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:zhmwq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文突破传统调控机制的束缚,将石墨烯引入到常规介质中来构建一种新型复合结构特异材料,这种新型复合材料在太赫兹(THz)波段电磁色散关系由于石墨烯的加入使得决定能带结构的色散关系必将发生改变。通过电控或者掺杂的方式来调节石墨烯的费米能,从而改变石墨烯的电导率,就能改变种新型复合材料的能带结构。基于电磁边界条件麦克斯韦(Maxwell)方程,开发了一种计算电磁波传播的新的电导率传输特征矩阵,与传统的转移矩阵方法相比,该方法可用于计算分层介质中任何位置的任何层的光吸收。通过使用这种新方法,研究了石墨烯在电磁特异材料中的太赫兹吸收特性。结果表明,由于电磁特异材料缺陷层中光子的强烈局域作用,该结构可以获得理想的太赫兹吸收。通过控制石墨烯的化学势,太赫兹吸收可以从0%持续调节到100%。通过调整入射角或材料组分的周期数,可以控制最大太赫兹吸收。通过改变组成电磁特异材料的层的中心波长或两个石墨烯组成谐振腔的腔长宽度大小,可以调整太赫兹吸收峰的位置。这些特性在通信、光电探测器等方面有潜在应用。
其他文献
吡咯及其多取代衍生物是一类重要五元杂环,单独或做为核心骨架存在于很多产物结构中,部分具有很好的抗炎、抗菌、抗病毒、EP1受体拮抗剂、安定和抗痉挛、抗癌活性等生物活性
粗粒度可重构架构(Coarse-Grained Reconfigurable Architecture,CGRA)是近年来兴起的一种兼具灵活性和高能效的领域专用处理架构,一定程度上填补了专用集成电路和通用处理器
随着大数据、人工智能等领域的不断发展,人们对于具备低能耗高性能的计算需求与日俱增。基于CMOS逻辑电路和冯诺依曼架构的传统计算系统的发展目前已经遇到瓶颈,在未来将无法
随着信息技术的高速发展,第二代网络的容量与速度越来越无法满足信息需求。全光网络具有传输信息量大、传递效率高、安全可靠等特点,是未来网络发展的方向。全光开关是全光网
环境能量收集是指在不需要电池和电缆线的协助下,将能量从环境中直接获取并转换为电能的一种能量收集方式。与传统供电技术相比,该技术具有绿色无环境污染的特点,无需人工更
XS1区块自2004年气井陆续投产,到2008年全面投入开发,随开发时间延长,区块开发面临着产能大幅度递减、压力逐渐下降、储量动用程度差等诸多问题。为改善区块开发效果,提高稳
随着科技的进步,作为现代高科技的结晶和化身,导弹技术获得空前发展,成为维持世界战略平衡的支柱和信息化战争的主战装备。而红外制导技术因其制导精度高、抗干扰能力强、隐
自第一次工业革命汽车被发明以来,随着经济与科技的发展,各种各样的车辆越来越多,随着车辆的增多,传统的无线蜂窝网络已无法满足车辆间通信的带宽要求,然后车辆自组织网(Vehi
目前,中国正处于城市地铁等地下结构发展的高峰期,且很多城市位于8度设防区,故地下结构抗震对于保障我国城市工程系统地震安全具有重要意义。地下地震动参数是地下结构抗震设
传统的酶联免疫吸附分析法(Enzyme-linked immunosorbent assay,ELISA)存在灵敏度相对较低、操作复杂费时、不能多目标物同时检测等缺点,是其在临床诊断生物标志物检测的应用方