论文部分内容阅读
延性金属动态拉伸断裂过程是一个多尺度的科学问题,大体上涉及三个物理层次——原子层次、细观层次和宏观层次。早期学者们通常把实验测量的宏观物理量——层裂强度(最大拉伸强度)作为描述延性金属动态拉伸断裂的特征物理量,但是大量的实验结果表明,层裂强度与加载应力、拉伸应变率相关,因而它不是一个材料物性常数。后来,Curran等人(Physics Reports,147(5&6),253-388,1987)通过对回收样品的金相分析,在细观(介观)层次上认识到延性金属动态拉伸断裂是一个微损伤随时间不断累积而诱发灾变断裂的过程。最近,Strachan等人(Phys.Rev.B,63,060103,2001)和Sepp(?)l(?)等人(Phys.Rev.Lett.,93,245503,2004 and Phys.Rev.B,71,064112,2005)在原子层次上的分子动力学模拟结果表明了延性金属动态拉伸断裂具有某种临界行为。本文在Curran等人(Physics Reports,147(5&6),253-388,1987)的实验研究和封加波等人提出的损伤度函数模型(J.Appl.Phys.,81(6),2575-8,1997)基础上,探讨采用特征物理量——临界损伤度来表征延性金属动态拉伸断裂特性;并基于Strachan等人(Phys.Rev.B,63,060103,2001)的分子动力学研究成果和逾渗理论,提出了一个新的逾渗软化函数,用于描述损伤演化后期到断裂灾变之前由于微孔洞聚集而导致的材料快速软化过程。本文以20#钢和纯铝为主要模型材料,通过实验和数值模拟方法,对爆炸与冲击作用下延性金属动态拉伸断裂的一般特性进行了比较系统的研究。研究结果表明:在一维应变平面冲击加载条件下,断裂临界损伤度对加载应力和拉伸应变率变化不敏感,并在预测金属柱壳动态拉伸断裂中也具有适用性,从而初步证实了断裂临界损伤度是一个材料物性常数,可以用于复杂应力环境下表征延性金属动态拉伸断裂性质。本文的主要工作和创新点简要归纳如下: 1.采用一级轻气炮加载,通过激光速度干涉测速系统(VISAR)测量平板样品自由面速度剖面,对20#钢的层裂特性进行了比较系统的实验研究。通过改变飞片和样品的厚度及飞片速度调整拉伸应变率与加载应力,拉伸应变率变化范围为104~106s-1,加载应力5~10 GPa。实验结果显示:20#钢的层裂强度随拉伸应变率的增高而增大,106s-1条件下层裂强度比104s-1时提高近60%;但在5~10 GPa加载应力范围内和拉伸应变率基本不变的条件下,层裂强度基本不变。文中还对强激光辐照加载条件下纯铝的损伤演化行为和层裂特性开展了类似的实验研究,发现纯铝的层裂强度也随着拉伸应变率增加而增大,特别在拉伸应变率超过106s-1以后,层裂强度随着拉伸应变率的提高更加显著。 2.对微孔洞演化过程中的聚集行为进行了分析与讨论。文中借鉴Strachan等人(Phys.Rev.B,63,060103,2001)的分子动力学研究成果和逾渗理论,提出了逾渗软