论文部分内容阅读
熔石英光学元件是高功率激光装置中重要的组成部分,在加工成型过程中由于受力不均匀或杂质的引入会造成亚表面缺陷(如裂纹、划痕等)。因为其亚表面缺陷吸收激光的能力特别强,当激光辐照熔石英光学元件时亚表面缺陷会迅速吸收激光能量,导致局部温度急剧升高进而会发生热熔、炸裂现象造成熔石英的损伤,这种损伤称为激光诱导损伤。探测熔石英光学元件亚表面缺陷,提高熔石英光学元件的抗激光诱导损伤能力,延长光学元件的使用寿命是目前迫切需要解决的问题。荧光无损探测是一种无损探测熔石英亚表面缺陷比较好的方法,但是由于熔石英亚表面缺陷自身荧光信号相对较弱,微小的亚表面缺陷不容易被探测到,从而不利于准确的分析亚表面缺陷。本文主要通过HF酸和离子束刻蚀逐层剥离熔石英光学元件,研究熔石英亚表面缺陷的变化规律以及所在的深度范围。根据熔石英亚表面缺陷的变化规律以及所在深度范围,选择抛光的方法将荧光剂加入到熔石英亚表面缺陷中以增强其荧光强度,从而有利于熔石英亚表面缺陷的探测。本文主要结果如下:1)采用质量分数相同的HF酸溶液逐层刻蚀熔石英光学元件,熔石英光学元件的刻蚀深度分别为300nm、1μm、3μm、5μm、10μm和15μm;分析实验结果可以得出熔石英的损伤阈值随着HF酸刻蚀深度的增加而增加,最终趋于稳定值。利用荧光无损探测法测试熔石英亚表面缺陷发现:当熔石英元件刻蚀深度达到300nm时其荧光图片右上角有条划痕,当刻蚀深度达到1μm时划痕消失,表明此划痕的深度在300nm到1μm之间并且荧光信号强度也是减弱的;当刻蚀深度从3μm到5μm时荧光信号强度反而增强了,刻蚀深度从5μm到15μm时荧光信号强度又减弱了且信号强度几乎为零,说明亚表面缺陷基本上都已去除。2)通过离子束刻蚀对熔石英光学元件表面逐层剥离,研究了散射、荧光缺陷、表面形貌、表面粗糙度及激光损伤阈值与剥离深度之间的变化规律。3)对比荧光无损探测设备测试的荧光图像和光学显微镜原位形貌图片,可以发现荧光点缺陷密度随HF酸刻蚀深度的增加逐渐减小;熔石英亚表面缺陷中的划痕随着刻蚀深度的增加,宽度、长度和深度都是增加的,当刻蚀到一定程度时,划痕被钝化,这也证实了荧光检测亚表面缺陷方法的可靠性和科学性。通过荧光剂的添加实现了熔石英亚表面缺陷荧光增强,形成了熔石英亚表面缺陷荧光诱导增强探测技术,为熔石英在高功率激光装置中的安全使用提供了保障。