虚拟牙齿正畸路径规划方法研究

来源 :西安科技大学 | 被引量 : 0次 | 上传用户:qjunp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
虚拟牙齿正畸系统是数字化矫治的核心,实现了在三维可视化状态下牙齿移动的方式和步骤,其中包括牙颌模型分割与处理、牙齿运动轨迹规划及正畸方案定制、牙龈软组织跟随变形等环节,最终目标是为患者所佩戴的隐形矫治器提供数据源。牙齿运动轨迹和矫治方案的确定是虚拟牙齿正畸系统中非常重要的技术环节,不仅能让患者在治疗前看到虚拟正畸效果,更方便医生对正畸方案的设计和矫治效果的预测。符合临床实际的运动和合理的矫治方案可以缩短正畸周期,降低对牙科医师经验的依赖,提升患者的正畸体验感。本课题围绕牙齿正畸运动路径及矫治方案生成展开了相关研究,主要内容及创新点如下:(1)牙齿正畸路径规划是一个有障碍的多目标多约束路径规划问题,针对复杂的口腔正畸运动本文在已知牙齿初始位姿及目标位姿的情况下,通过改进多粒子群算法实现正畸路径规划。首先对牙齿运动的约束条件及优化目标进行建模;其次设定牙齿优先级并选用OBB包围盒模拟牙齿碰撞检测;最后在粒子群算法的基础上改进惯性参数、位置更新上下限、速度更新策略三个部分,提高路径规划算法的临床适用性、缩短了正畸路径。(2)针对隐形矫治器效能不足致使牙齿不能达到理想位姿的情况,分析牙齿不同运动维度的移动效能,通过路径补偿的方式修正运动结果,提出两种过矫正方法并进行评估;最终选取预先过矫治方法生成正畸方案,可视化牙齿正畸运动过程,对比过矫正前后的效果,使虚拟牙齿正畸流程更完善。(3)在Matlab平台模拟改进多粒子群牙齿正畸路径规划算法,在实现不同目标差异化运动的同时,正畸路径长度较改进前缩短约10%,旋转角度值减少7%,算法表现出良好的性能和临床的适应度;在可视化实验中,展示了牙齿正畸运动过程及过矫正前后的正畸效果。
其他文献
视觉同步定位与地图构建(Visual Simultaneous Localization and Mapping,vSLAM)是实现移动机器人自主定位和导航的核心技术,已被广泛应用于自动驾驶、智能家居及航空等领域。闭环检测作为vSLAM系统的一个重要模块,它通过识别机器人是否到访之前经过的位置,可以有效地减少累积误差并校正构建的地图。经典的闭环检测算法应用于复杂环境时存在准确率低、耗时长及鲁棒性差
指纹识别技术作为应用最广泛的生物特征识别技术,已经普及于智能门锁、打卡机等电子设备的身份认证之上。随着指纹采集器变得更加小型化与轻便化,使得采集到的指纹图像越来越小,应用传统的指纹识别方法针对小面积指纹图像进行识别,会导致正确识别率大幅降低,同时LED灯作为光学指纹采集器使用最频繁的背光源,存在功耗大、背光不均匀等不足。因此,本文设计了一种应用PMOLED(Passive Matrix OLED)
煤炭资源是我国重要的基础能源,采煤和洗煤的工艺过程中煤矸石含量的高低极大的影响了煤的纯度和质量,因此煤矸石的分选对提高煤炭自动化生产效率有着重要的意义。传统的煤矸分选方法效率低下、污染环境、成本过高,已经不能满足当今智慧矿山的发展需求。基于此,本文对传统分选方法进行总结和分析,从图像识别角度,提出采用图像纹理特征参数和深度学习技术进行煤矸石分选的方法,主要研究内容如下:论文以陕西韩城象山矿井所采集
近年来我国浅层煤炭储备逐渐减少,深部开采的比重随之逐年上升,而瓦斯的有效抽采在一定程度可消除煤矿深部开采带来的安全隐患。因此针对瓦斯安全、高效抽采的需要,对瓦斯抽采系统进行智能调控具有重要的研究意义。为了提高瓦斯抽采的安全性及效率,降低瓦斯抽采的经济成本,分析了瓦斯抽采系统运行的安全约束条件及效率约束条件;分析了瓦斯抽采系统四大控制任务并建立了瓦斯抽采优化数学模型;根据理论调控策略,提出了瓦斯抽采
视觉惯性里程计作为自主移动机器人和相关领域的一项重要技术,拥有广泛的应用前景。利用图像信息与惯性测量单元(Inertial Measurement Unit,IMU)信息的互补性可以更加准确地计算传感器位姿变化情况,并增强系统的鲁棒性。因此,进行视觉惯性里程计的研究具有十分重要的理论意义与应用价值。针对视觉惯性里程计在处理图像信息时,特征点正确匹配率较低的问题,改进SIFT(Scale Invar
随着传感器技术的发展,霍尔电流传感器在工业自动化、汽车电子、航空航天和国防等领域得到了广泛的应用。但是,电路中存在闪烁噪声和失调电压、霍尔元件灵敏度受温度影响会发生改变,这些因素严重影响了霍尔电流传感器的检测精度。因此,研究噪声、失调电压抑制技术以及灵敏度温度补偿技术,设计一款低噪声、低失调电压和灵敏度温度特性良好的霍尔电流传感器芯片具有重要理论意义及工程应用价值。通过分析霍尔元件失调电压的来源,
随着网络的快速发展,以网络为载体的信息量迅速增长,使得图的规模也随之扩大。由于大规模图数据无法使用单机环境进行处理,因此分布式图计算应运而生。分布式图计算需要将图数据合理地分布到每个节点,对图进行合理划分是实现分布式图计算的前提。现实世界的图处于不断的动态演化之中,如何对动态图进行合理划分是当前的一个研究热点。针对动态图划分问题,本文的主要研究内容如下:首先,研究新增图社区性对动态图划分质量的影响
传统传感器存在体积大、灵敏度低、污染样本的缺点,利用超介质的非常规特性,可以克服原始材料的局限。与传统传感器相比,超介质传感器具有设计简单、灵敏度高、选择性强和检测即时等优势。在开环谐振器(SRR)和互补开环谐振器(CSRR)结构的基础上,设计并研究两种超介质传感器。通过对比两种传感器,超介质可以为传感器的设计和性能的提升提供新的思路和方法。本文主要工作总结如下:(1)提出一种基于四个六边形互补开
近年来随着科技的发展,使得行为识别技术也不断成熟,而获得外观信息的同时捕获帧间运动信息是行为识别的难点,双流卷积神经网络因能够捕获时空信息受到广泛关注。但视频包含噪声、光照变化等因素,以及视频行为持续时间较长都会影响识别的准确率。本文以双流卷积神经网络为基础进行深入研究,针对行为识别存在的问题,提出以下几种策略来提高识别率:(1)通过scSE模块来对图像特征进行筛选,提出融合scSE的双流网络模型
减少矿井水害事故的发生对于煤矿安全生产十分重要,但矿区水文地质复杂,预防矿井水害事故难度较大。有效快速地进行矿井水源类型判别,不仅能预防水害事故的发生,且在水害发生时能迅速定位发生地,便于煤矿企业采取应对措施,对矿井水害的预防和治理起着至关重要的作用。因此建立合理有效的矿井水源判别模型是防治矿井水害事故的关键。神经网络具有较强的非线性拟合能力,被广泛应用于分类问题,故采用确定性分层循环跳跃网络(C