论文部分内容阅读
本论文的研究包括开发新的功能化金属有机骨架(MOFs)材料和有机-无机复合材料。上述类型的材料,被用作催化剂和能量储存用的定型相变材料(PCM)的载体。首先简单介绍了催化剂和热能存储的背景,然后介绍了这些固体多孔材料的制备,及其在催化和相变储能领域的应用性能。通过后合成修饰方法,用1,3-丙磺酸内酯合成了高效的烷基磺酸盐官能化的氨基-MOFs(MIL-101-Cr-NH-RSO3H)。固体 MIL-101-Cr-NH-RSO3H 催化剂,在苯-1,2-二胺与1,2-二羰基化合物的缩合反应制备喹喔啉衍生物中,表现出优异的催化性能。通过水杨醛与活化的亚甲基化合物丙二腈在水相非均质条件下的缩聚反应,研究含有二氢香豆素的Knoevenagel缩聚反应中,双官能团MOFs(MIL-101-Cr-NH-RNH2)的催化行为。基于铬离子和桥联分子苯-1,3,5-三羧酸(BTC)合成了有机-无机杂化多孔金属-有机凝胶(MOGs)。MOG-100(Cr)的多孔性,保证了被包封的硬脂酸(SA)优异的热稳定性。即使将SA@MOG-100(Cr)复合材料加热到超过其熔点,也没有观察到来自MOGs中PCMs的泄漏。其最大包封重量比高达90%的SA,并且没有泄漏。通过分别与苯-1,4-二胺,4,4’-亚甲基二胺和1,3,5-三嗪-2,4,6-三胺缩合,制备了一系列1,3,5-苯三羰基三氯化物交联有机聚合物。合成的聚合物具有非腐蚀性、环境友好性;高热稳定性和永久孔隙率,能为相变材料提供优异的支撑,有效防止熔融的PCMs泄漏。用PEG 2000作为相变芯材,在PTP-A聚合物材料中,包封重量比高达85%PEG 2000,并且这些复合材料形状稳定,没有熔融的PCM泄漏。PTP-A可作为一种新型的储能材料,并且该复合材料在热循环50次后,仍然表现出优异的稳定性。