论文部分内容阅读
有机电致发光器件(OLED)由于具有高的发光效率、柔性、自发光、可视化角度大、高亮度以及高的对比度等优点,在固态照明领域、平板显示领域和LCD背光源领域具有潜在的应用。但是,在商业化应用中OLED还面临很多技术难题。器件的结构复杂,生产工艺不容易控制和生产成本高等特点制约着OLED的发展。在本论文中,我们采用双母体的结构来平衡器件中载流子的传输,并且在对器件性能进行探究的同时,对器件结构进行简化。首先,基于双极性传输能力的4,4’-Bis(carbazol-9-yl)biphenyl(CBP),我们制作了一个结构简单的黄光对比器件。该器件结构简单,不包含任何载流子传输层。由于母体CBP的电子传输能力相对空穴传输能力较差,其最大效率分别只达到了20.7 cd/A和6.9 lm/W。为了进一步优化器件性能,我们制作了基于双母体结构CBP:1,3,5-tris(2-N-pheylbenzimidazolyl)benzene(TPBi)的简单结构单发光层黄光器件。我们通过改变双母体的掺杂比例来平衡发光层中空穴和电子的传输和复合,从而提高器件的性能。其最大效率分别为37.1 cd/A和33.3 lm/W。通过对单载流子器件进行分析我们还发现黄光发光材料iridium(Ⅲ)bis(4-phenylthieno-[3,2-c]pyridinato-N,C20)acety-lacetonate(PO-01)促进了空穴和电子的传输,进一步提高了器件的性能。其次,基于上述黄光器件双母体的平衡载流子的能力,我们制备了结构简单的高效、色稳定性好的两色白光器件。其中,我们在蓝光层Bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(Ⅲ)(FIr Pic)中采用双母体4,4’,4"-tris(Ncarbazolyl)triphenylamine(TCTA):TPBi的结构,在黄光层PO-01中我们采用电子传输能力强的TPBi。通过调节蓝光层中TCTA和TPBi的掺杂比例,我们得到色稳定性好的两色简单结构白光器件,其最大效率分别为45.5 lm/W和43.5 cd/A。其中,双母体TCTA:TPBi掺杂比例为1:5的器件显示了好的色稳定性,其色坐标从亮度114 cd/m~2变化到10 550 cd/m~2,色坐标只变化了(-0.016,-0.006)。基于二色白光器件启发,我们在二色白光器件的黄光层中,加入红光发光材料Ir(MDQ)2(acac)。通过调节红光材料的掺杂比例,我们得到了色稳定性好的三色白光器件,其最大效率分别为32.8 lm/W和31.3 cd/A。