论文部分内容阅读
流程工业是制造业的重要组成部分,是经济社会发展的支柱产业之一,与经济发展和人民生活密切相关。随着我国行业结构调整稳步推进、实力增长迅速,国际影响力显著提高,中国工程院《新一代智能制造》战略发展报告中指出“流程工业最有可能率先突破新一代智能制造”。但是随着能源价格的持续增长,环境控制的日益严格以及全球产业结构深度调整国际竞争更加激烈,以化工过程为代表的流程工业也面临着巨大挑战。为了有效促进企业竞争力和高端制造水平、实现柔性生产,对过程的工艺设计和控制设计进行集成优化成为提升化工行业自动化和智能化水平的必由之路。本文在综述了过程设计和控制优化一体化问题的国内外研究现状的基础上,针对人工智能兴起的新形势下,对过程设计和控制优化带来的赋能和启发,以“迁移学习-算法引擎-不确定性分析-优化策略”为主线,挖掘机理复杂的流程系统中的关联知识以及动态特性,形成了“替代模型-融合先验知识的替代模型-样本迁移学习算法-模型迁移学习算法”的层次化、多维度的建模方法,解决传统优化一体化问题中过程设计与控制优化环节模型相互脱节、衔接不够、计算效率低的问题。从优化策略的角度对影响过程设计和控制的不确定性因素进行系统的分析,明确了随机不确定性的分布律、模糊不确定性的隶属度,分别提出了基于机会约束和基于模糊决策的过程设计和控制优化一体化求解策略,提升了在不确定环境下进行一体化优化设计决策的灵活性和可信度。本文的研究工作和创新点如下:1.针对过程设计和控制优化一体化中线性模型与机理模型联系不紧密、重复建模计算效率低的问题,本文以高斯过程模型为基础,并且通过分析工业过程中能量、物料及其组分在生产过程的传递和转化中主要动态平衡关系,提出了融合过程稳态数据和稳态知识的融合建模方法,提高了模型建模效率。同时,进一步挖掘优化迭代的每一步产生的模型训练数据中蕴含的过程知识,提出了样本迁移学习算法,将有用的过程动态数据迁移到新的设计方案的模型训练中。为了避免无效数据的迁移,提出了主动样本筛选策略。保证模型精度的同时显著降低了训练新模型所需要的样本数量,进一步提高了过程设计和控制优化一体化的建模效率。2.针对一体化问题中建模效率低,且基于数据的迁移学习方式无法表征模型的可靠程度的问题。本文提出了基于迁移基向量的迁移学习建模方法。将一体化优化迭代过程产生的过程动态模型以基向量的形式,转化为描述过程不同区域动态特性的知识。进而通过迁移学习与新的设计方案的模型进行融合训练,在显著降低训练新模型所需样本数量的同时增加了模型的泛化能力。在此基础上,系统性的分析了在迁移学习过程以及动态多步预测过程中的不确定传递关系,为提高迁移学习模型的可信度提供了理论依据。3.针对现有一体化研究中基于最坏情况的设计策略过于保守,且对不确定性描述方法过于简化的局限。本文从概率统计的角度分析了影响过程设计和过程控制的不确定性和扰动因素,指出过程长周期运行时受到多重来源多重时间尺度的不确定性的影响,提出了变时间尺度的不确定性的描述方法。并设计了基于机会约束的过程设计和控制优化一体化求解框架,分别针对影响过程设计和影响过程控制的不确定性进行转化。并设置不同的置信度对变时间尺度不确定性下过程设计和控制进行一体化优化,为过程设计和控制优化一体化问题提供了统筹经济效益和不确定性的灵活的求解策略。4.针对动态特性复杂、状态存在离散跳变的多重稳态过程,导致其不确定性的传递关系复杂的问题,本文详细分析了稳态点位置选择对于过程动态以及过程经济性能的影响。提出了模糊集合的形式描述过程不确定性造成的影响,通过模糊决策的方式,评估不确定性对系统的影响,针对约束条件和目标函数分别提出了不同的模糊化方法,使得最终的一体化优化在最坏情况的保守设计和激进设计之间找到折中的设计方案。避免设计决策过于保守或者激进,兼顾过程的经济效益、系统鲁棒性和不确定性风险之间的关系。