论文部分内容阅读
地铁对大幅度提升城市交通运输效率具有重要意义,我国城市地铁隧道建设正大规模开展。盾构法施工由于对地层的扰动小、受环境影响小、施工效率高等诸多优点,已成为城市地铁建设的重要施工方法。我国地域广阔,地层条件复杂多变,其中砂卵石地层就是一种典型的力学不稳定地层,在盾构掘进扰动下,地层反应较为灵敏,原有相对稳定或平衡状态容易受到破坏,形成地层损失和围岩扰动,导致地面沉降甚至塌陷,危及临近建筑物。本文以广州地铁二十一号线为工程背景,针对盾构隧道在砂卵石层掘进过程,考虑盾构隧道-土体-建筑物相互作用,利用理论分析、数值计算、监控量测等手段,研究地铁区间盾构施工地层变形规律及对临近建筑物的影响。主要工作及成果如下:1、对盾构隧道施工引起的地层沉降主要研究成果进行汇总归纳,分析了砂卵石地层中盾构掘进对地层的扰动机理、滞后沉降的形成原因以及盾构隧道在动态施工过程中土体扰动的力学行为。2、采用MIDAS GTS NX有限元软件,对盾构侧穿桩筏板基础建筑物的工程案例进行模拟分析。结果表明:盾构掘进过程中,地表横向沉降槽曲线的综合形态为“V”形,沉降最大值为11.8mm(位于两隧道中心偏向建筑物侧),盾构隧道施工引起的地表最大水平位移4.82mm(向开挖临空面侧移动);隧道仰拱底部隆起最大值为28.26mm,拱顶沉降最大为25.58mm,隧道左右两侧土体最大横向位移为11.42mm;刀盘前方一定范围内土体隆起、后方土体沉降,远离建筑物侧隧道中心、两隧道中心、近建筑物侧隧道中心位置刀盘前地表最大隆起值分别为0.8mm、1.2mm、0.6mm,刀盘后地表最大沉降值分别达到9.87mm、11.8mm、10.4mm;盾构机通过后,建筑物基础近隧道侧产生最大值为5.4mm的沉降,远离隧道侧先产生最大0.4mm的沉降,之后由于建筑物向隧道侧倾斜而产生0.2mm的抬升,建筑物倾斜率为0.00043,符合建筑物沉降控制标准。掘进施工过程中,两隧道轴线中心所在位置的地层变化最明显。3、通过模拟分析不同顶推力对地层变形的影响,得到相应的沉降规律。千斤顶推力分别为100k Pa、110k Pa、120k Pa、130k Pa时,地表最大沉降量分别为10.63mm、10.76mm、11.8mm、12.41mm,顶推力对地表沉降的变化幅度影响很小;盾构刀盘前土体最大隆起值分别为0.58mm、0.82mm、1.08mm、1.34mm,顶推力越大,盾构刀盘前土体隆起值越大,隧道仰拱底部土体隆起值越大;随着盾构隧道的掘进,建筑物基础沉降值和横向位移值不断增加,其发展趋势及增幅情况基本相似。4、其他施工因素不变的条件下,注浆压力分别为110k Pa、150k Pa、190k Pa、230k Pa时,地表横向最大沉降值分别为12.7mm、11.8mm、7.44mm、6.32mm。当盾构隧道侧穿建筑物时,随着注浆压力的不断增加,建筑的纵向沉降值、横向位移值不断减小。注浆压力大于190k Pa后,注浆压力对建筑物沉降变形的影响非常小。5、其他施工因素不变的条件下,当注浆液弹性模量分别为5GPa、10GPa、15GPa、20GPa时,地表横向沉降值分别为13.56mm、11.8mm、11.18mm、10.54mm。随着注浆液弹性模量的增大,沉降槽曲线的形态也在发生变化,当注浆液弹性模量为5GPa时,沉降槽呈“V”字形态,地表沉降的最大值位于两隧道轴线之间的范围,当注浆液弹性模量为10GPa及以上时,沉降槽成“W”形态,且随着注浆液弹性模量的增大,“W”形态表现的越明显,其地表沉降的最大值位于靠近建筑物侧隧道轴线上方的位置。随着注浆液弹性模量逐渐增大,建筑物基础的沉降值及横向位移值不断减小。