论文部分内容阅读
近年来,微电子产品更新越来越快,人们期待获得更优的服务和体验。集成电路作为微电子产品不可或缺的核心部分,需要不断的提高其性能以满足市场需求。电流差分跨导放大器(CDTA)是一种新型的电流模式器件,其输入输出均为电流变量,具有输入端虚接地、输入阻抗低、输出阻抗高及带宽较大等优点,广泛应用于滤波器、振荡器、高速整流电路等各种模拟信号处理电路中。现场可重构模拟阵列(FPAA)是一种类似于现场可编程门阵列(FPGA)的新型集成电路,通过内部可编程开关状态的改变使内部电路的连接结构和参数发生变化,从而实现不同的电路功能。FPAA因能快速、灵活改变电路结构,从而自适应不同的应用场合,在工业控制、航空航天、智慧医疗等领域有着广泛的应用前景。本文介绍了 CDTA和FPAA的研究现状;研究了基于CDTA的FPAA,所设计的FPAA继承了电流模式电路较高的带宽和工作频率,传输损耗小等特点;设计了基于FPAA生成的滤波器电路,其主要创新工作有以下几个方面:(1)提出了一个基于CDTA和跨阻放大器(TIA)的FPAA。本文首先设计了一个具有多输出端的可编程跨导放大器(OTA)和电流差分单元(CDU),通过CDU和可编程OTA的组合实现CDTA。基于CDTA和TIA设计了一种新型的可重构模拟单元(CAB),由CAB搭建了一个FPAA。FPAA由9个CAB构成,CAB之间通过纵横交织的垂直和水平网状线连接。网状连接线中的每一个节点的状态由可编程开关控制。提出的FPAA采用Charted 0.18μm CMOS工艺进行了 Cadence仿真验证,结果表明所设计的FPAA通过编程能生成电流模式三阶低通、高通和带通滤波器,其中三阶低通和高通滤波器带宽在1-40MHz之间可调,三阶带通滤波器的中心频率在4.51MHz-38.56MHz,带宽2.57MHz-20.51MHz之间可变。(2)提出了基于FPAA生成的有限频率传输零点的低通、高通、带通滤波器。通过对无源RLC梯形网络的间接模拟实现对应的滤波器,且改变可编程OTA的跨导值gm可以调节滤波器的带宽、中心频率及零点位置ω。。在Cadence Virtuoso ADE环境下利用Charted 0.18μm CMOS工艺对提出的有限频率传输零点滤波器进行了仿真分析,仿真结果表明本文提出的有限频率传输零点低通、高通、带通滤波器具有良好的性能。滤波器的工作频率范围在1MHz-40MHz之间。