论文部分内容阅读
不同于陆上电力系统,船舶电力系统的推进负载对电网的稳定性有着明显的影响。船舶电力系统中的动/静态负载与发电机系统形成强非线性、强耦合的动态特征。船舶电力系统控制问题属于一类典型的非线性系统控制研究范畴,研究船舶电力系统的非线性控制问题具有重要的理论价值和现实意义。为此,本文基于鲁棒非线性控制理论,对包含推进负载的船舶电力系统进行稳定性分析,探讨船舶电力系统的非线性控制问题,旨在提高船舶电力系统的动态品质。具体研究工作如下:第一,建立包含电力推进负载的柴油发电机组的非线性数学模型,该模型可以反映负载与发电机的频率和电压的影响,充分体现了船舶电力系统的变量耦合关系。第二,基于对柴油发电机组的非线性数学模型及其动/静态负载的相互耦合的非线性动态结构特性的深入分析,采用Backstepping控制技术与L2干扰抑制相结合的控制设计思想,提出发电机组调速、调压的非线性控制策略。由于充分考虑了系统的非线性特性,该控制器在保证系统稳定的条件下,能有效地抑制干扰对发电机系统功角和频率的影响。仿真表明,给系统突加动/静态负载的情况下,该控制器能有效地抑制负载对系统性能的影响。第三,为了获得更加简洁的控制器结构,基于Hamilton能量理论控制方法,研究了具有螺旋桨推进负载的船舶电力系统的励磁与调速的综合控制问题。通过构造Hamilton能量函数,给出保持系统稳定的综合控制律。特别地,不同于已有的结果,该控制律清晰地给出了螺旋桨转速对控制器性能影响的函数关系。第四,提出基于Hamilton能量函数方法的带有SMES的舰船电网的综合控制策略。电力推进及新概念武器的引入对舰船电力系统功率分配提出更高的要求,SMES能够四象限范围内对系统有功和无功进行调节。在充分分析了柴油机组的非线性数学模型、SMES及其推进电机负载的相互耦合的非线性动态结构特性的基础上,通过预置状态反馈完成了耗散Hamilton实现,然后基于耗散实现设计了SMES、调速与励磁综合控制器,该控制器结构简单,物理意义明确。第五,提出多机并联系统的稳定控制问题,建立包含螺旋桨负荷的多机结构保留系统模型,即微分代数系统,并利用Hamilton能量函数方法,研究了具有螺旋桨推进负载的船舶多机电力系统的励磁与调速的综合控制问题,通过构造Hamilton能量函数,给出保持系统稳定的综合控制律。最后对双机并联系统进行仿真,仿真验证了控制器的鲁棒性。