【摘 要】
:
第五代移动通信技术(5G)的高速发展,推动了物联网(Io T)的全面建设,人类与电子设备之间的关系变得密不可分。其中,传感器网络的开发构建,作为技术革新的核心推动力,打破了现实世界和虚拟世界的壁垒,搭起了人机交互的桥梁。然而,丰富的人机界面(HMI)系统,虽满足了人们的美好生活需求,也不可避免地产生了惊人的耗电量和天价维护费用。因此,开发新型的自驱动传感器用于人机界面是十分必要的,它既能摆脱对电池
论文部分内容阅读
第五代移动通信技术(5G)的高速发展,推动了物联网(Io T)的全面建设,人类与电子设备之间的关系变得密不可分。其中,传感器网络的开发构建,作为技术革新的核心推动力,打破了现实世界和虚拟世界的壁垒,搭起了人机交互的桥梁。然而,丰富的人机界面(HMI)系统,虽满足了人们的美好生活需求,也不可避免地产生了惊人的耗电量和天价维护费用。因此,开发新型的自驱动传感器用于人机界面是十分必要的,它既能摆脱对电池的过度依赖,还可以适应更多模式和更多维度的交互方式。目前,以摩擦纳米发电机(TENGs)为代表的自驱动传感器,在新型人机界面中逐渐崭露头角。出色的结构适应性决定了它在便携式、可穿戴和柔性化的传感界面拥有独一无二的优势。然而,在已报道的摩擦电人机界面研究工作中,大多数采用单一的工作模式对变量进行识别,这不可避免地使传感界面的功能受到限制,在扩展功能时往往以增加器件体积作为代价。本论文以实现小型化和多功能的自驱动摩擦电界面为目标,基于TENG的多重工作模式,开发多变量识别的自驱动混合编码器(SHC)用于人机交互。进一步地,探索SHC的信号输出特性及编码方法,设计实验对其编码通信能力和电子设备控制能力进行了检测,并提出对自驱动摩擦电界面未来发展的一些看法。本论文的主要研究内容和结果概括如下:1.设计并制备出自上而下且中空结构的自驱动混合编码器(SHC)。其拥有TENG的单电极(SE)和接触分离(CS)两种工作模式,能够分别对触摸和按压动作进行响应。通过微纳表征和COMSOL软件对器件的表面结构和工作原理进行了分析,并搭建力电测试平台对两种工作模式下的信号输出进行了验证,结果表明:在触摸和按压两种动作指令下,SHC的输出性能均表现稳定,信号对力和频率的响应非常明显,并通过了耐久度测试。2.基于SHC对触摸和按压动作的稳定响应,构建了混合信号输出的编码人机界面。开发了SHC在摩尔斯编码通信、格雷编码通信和自定义二进制编码通信中的编码格式,并成功地接收和解码出传输信号。结果表明:SHC可以作为一种多功能的混合编码平台,一体化发送不同编码格式的信号。在人机交互的文本命令和数字信号传输中展示出强大的潜力。3.为了研究SHC作为编码人机界面对电子设备的控制能力,设计了智能信号灯系统和无线遥控车控制系统。对系统各节点的信号进行采集和分析,以及应用效果的实际情况进行验证。结果表明:在两种控制系统中,混合编码信号时刻保持稳定,对终端设备控制效果良好。这为自驱动传感器在物联网工程的进一步建设,以及人机交互和多功能控制的应用中提供了一种可靠的选择。
其他文献
海洋酸化被认为是威胁珊瑚礁生态系统的最主要因素之一,充分了解珊瑚共生虫黄藻和细菌对海洋酸化的响应对于理解珊瑚的适应机制和发展趋势具有重要意义。然而已有的研究尚未能揭示珊瑚共生虫黄藻和细菌响应酸化的调节机制。本论文从涠洲岛珊瑚礁区选择对环境变化非常敏感的强壮鹿角珊瑚(Acropora valida)为研究对象,在室内设置了4个pH梯度(pH分别为8.2,7.8,7.4,7.2),每个pH梯度持续10
高校的统战工作是党的统一战线工作重要领域,进入新媒体时代以来,高校统战工作面临构建“大统战”格局的新要求。通过SWTO模型对新媒体时代高校统战工作进行内部优势、劣势和外部机遇、挑战进行分析,并针对分析结果形成转变思想,创新工作机制、强化新媒体平台的建设、加强统战工作人才队伍建设、再造意识形态网络圈层的高校统战工作策略。
活动星系核是一类中心具有剧烈活动的星系,能在极小的体积内辐射出巨大的能量,其辐射可以覆盖从射电到甚高能伽马射线波段的整个电磁波谱。迄今为止,已证认的河外甚高能伽马射线辐射源大多是活动星系核,它们的高能伽马射线辐射被认为起源于相对论性喷流。FR0型射电星系是活动星系核的一个子类,是一类低光度的致密射电源,通常缺乏明显的大尺度喷流延展结构,被认为可能是年轻的活动星系核,处于演化初期阶段。在近邻宇宙中,
探究全新世珊瑚礁的发育过程及其与气候环境的关系,对于理解现代珊瑚礁对全球变暖的响应具有重要科学意义。本文以南沙群岛美济礁钻井(MJK-1,顶部高程0.19 m,井深200.88 m)岩芯的全新世段为研究对象,通过对13个样品的U-Th测年和对20个样品的粒度、生物组分、有孔虫属种、矿物成分分析等,构建了美济礁全新世地层的年代框架和沉积相带变化序列,重建了美济礁全新世珊瑚礁的发育历史。在此基础之上,
β-Ga2O3因其超宽禁带、高击穿场强等独特优势在大功率、高压电子器件、超深紫外探测等领域有重要应用前景,是近年来超宽禁带半导体材料的研究热点之一。掺杂是研制氧化镓基半导体器件关键工艺,对于氧化镓单晶,Si掺杂形成有效的n型半导体,而Mg掺杂则降低其导电性,形成半绝缘型半导体。掺杂不但会改变β-Ga2O3晶体的载流子浓度等电学性质,还会对其微结构和光学性质等产生重要影响。目前在掺杂氧化镓单晶的研究
利用扫描电镜和能谱分析等检测手段分析L290M冲击纤维断面率偏低的原因,结果表明,w(S)过高(0.004%),在组织中产生Mn S夹杂物,导致带钢韧性恶化。通过将w(S)控制在0.002%以下,可改善材料塑性,结果显示,-10℃时L290M冲击功纤维断面率趋于稳定,均达到90%以上,性能合格率达到100%。
在气候变暖导致珊瑚大面积白化、全球珊瑚礁生态系统快速退化的背景下,相对高纬度海域被认为是珊瑚潜在的避难所,因为该海域的夏季高温一般没有超过珊瑚生长的温度上限。在此背景下,重建相对高纬度海域珊瑚礁的发育过程,对于了解该海域珊瑚对过去气候的响应以及评估珊瑚礁的发育趋势等具有重要科学意义,但迄今关于相对高纬度珊瑚礁发育过程的研究还很少。北部湾涠洲岛位于热带北缘,属于相对高纬度的珊瑚礁。本文围绕相对高纬度
第三代半导体材料Ga N、In N、Al N等III族氮化物及其合金在现代光电器件中有着广泛的应用。但在传统的c面AlXGa1-XN材料中,由于生长方向与材料的极化方向平行,使其存在强烈的自发极化场,阻碍了器件的发光性能。为了解决这个问题,其中一种方法是生长出具有非极性的a面AlXGa1-XN,但因衬底与外延生长材料存在较大的晶格失配和热失配,高质量的a面AlXGa1-XN生长困难,限制着其实际应
随着特殊教育的不断发展,融合新课程教育的推广,盲校职业课堂上的生源也发生着变化。因此,文章对视力障碍学生在新课程教育下从多感官角度提出应对策略,其中包括:语言生动直观,抓住听觉获取途径、利用残余视力,珍惜视觉获取信息途径、利用双手,强化触觉获取信息途径、亲身感受,利用身体感知觉获取信息途径等,以期为更好地开展现阶段的盲校职业人才培养工作提供参考。
多铁性材料CuFeO2由于具有强烈的本征磁电耦合及丰富的物性机理而受到人们广泛的研究,而对于其诸多潜在应用,都来源于CuFeO2几何自旋失措结构及由高自旋Fe3+主导的独特磁性行为。CuFeO2的铁电性来源于其独特的磁结构,然而,CuFeO2磁性机理较为复杂,以至于无法有效了解其磁电调控机制,因此,对CuFeO2磁性转变的研究尤为重要,以对其具有巨大应用潜力的磁电耦合机制提供实验例证。作为强关联电