【摘 要】
:
高液限土在我国南方地区分布十分广泛,高液限土天然含水率高,细粒含量大,亲水性较强,水稳性差。在南方地区湿润气候条件下很难通过翻晒将高液限土填料从天然含水率降至最佳含水率附近进行碾压,使其达到压实控制标准。我国已有工程实践表明,将高液限土用作高速公路下路堤填料,在满足路基对填料强度和变形要求的前提下,适当降低压实度控制标准,同样可以确保路基的长期稳定,但压实度控制标准一直未能统一。由于含水率是影响路
论文部分内容阅读
高液限土在我国南方地区分布十分广泛,高液限土天然含水率高,细粒含量大,亲水性较强,水稳性差。在南方地区湿润气候条件下很难通过翻晒将高液限土填料从天然含水率降至最佳含水率附近进行碾压,使其达到压实控制标准。我国已有工程实践表明,将高液限土用作高速公路下路堤填料,在满足路基对填料强度和变形要求的前提下,适当降低压实度控制标准,同样可以确保路基的长期稳定,但压实度控制标准一直未能统一。由于含水率是影响路基压实的关键因素,结合水又是细粒土中水的主要形式,研究结合水对高液限土路用性能的影响,并据此提出高液限土路基压实度控制标准,对于促进我国特殊土路基工程问题研究和绿色公路建设具有重要理论和实际意义。本文选取海南高液限土,并以长沙粘土质砂为对比样,开展了基本物理性质、电镜扫描、重型湿法击实、浸水CBR和非饱和固结试验;利用容量瓶法、等温吸附法测定了土样的吸附结合水含量;并分析了吸附结合水对高液限土击实特性、强度、水稳性和压缩性的影响;将吸附结合水视为土中固相的一部分,提出并论证了高液限土压实度控制下限值计算公式。研究结果表明:海南高液限土含有大量微孔隙和叠片状结构的粘土矿物,吸附结合水的能力远强于粘土质砂。对于吸附结合水的含量本文认为可以参考容量瓶法的测试结果,试验结果与塑限相关性最大,前者约为后者的0.853倍。吸附结合水作用使高液限土相对粘土质砂而言最佳含水率偏高,最大干密度偏低;当初始含水率低于吸附结合水含量时,高液限土 CBR试件浸水后的膨胀量显著增强;吸附结合水对高液限土在高含水率状态下仍能保持一定CBR强度和低压缩性起到了积极作用,并可在路基运营期内始终保持稳定;根据泉三高速案例分析,在高含水率和新标准控制下填筑的路堤工后沉降量小,长期稳定性好,高液限土路基工后沉降率约为2‰;高含水率的高液限土填筑下路堤时其压实度控制下限值并非定值,而是与其吸附结合水含量和最佳含水率相关,前者越大于后者,压实度控制下限值越低;通过相关文献案例分析及在海南高液限土路基填筑中的应用,进一步验证了新标准的合理性和实用性。本文首次从结合水的角度揭示了高液限土路基压实度控制标准为什么可以降低的内在原因,提出并验证了以最佳含水率和吸附结合水含量为参数的压实度控制下限值计算公式。研究成果可为高液限土路基设计与施工及相关技术标准的制修订提供参考。
其他文献
由于受年龄、创伤、肿瘤和其他疾病等因素的影响,遭受骨缺损的人日益增多。骨组织工程为恢复和修复骨缺损提供了合适的支架,因此,在过去的几十年里引起了学者极大的兴趣和关注。作为新型打印技术的3D生物打印,具有高精度、低成本、设计灵活,能在短时间内针对患者特异性几何形状按需创建极其复杂的结构等优势,这恰好符合骨缺陷多样性的问题,目前已被广泛用来解决组织工程和再生医学方面的一些难题。然而,作为3D生物打印的
随着科学技术的发展,柔性机构在机器人和医疗器具等方面得到广泛应用。拓扑优化方法也被广泛应用在柔性机构设计中,柔性机构拓扑优化的研究工作也成为结构优化研究的重点之一。现有的柔性机构拓扑优化方法在解决柔性机构拓扑优化中出现的类铰链和灰度问题方面仍存在一些困难。而设计追求的最后柔性机构拓扑应该不含有类铰链,且应具有清晰的拓扑构型。本文针对柔性机构拓扑优化中出现的类铰链和灰度问题,开展了基于Heavisi
随着我国城市化进程的推进,建筑废弃物数量逐年增长且对环境造成严重破坏。十九大后我国高速公路建设已迈入新进程,目前高速公路建设所需的天然集料已出现紧缺状况,同时过度开采天然集料会对环境造成严重破坏,而建筑废弃物的再生利用能够有效解决资源紧缺和环境破坏等问题。基于此,本文通过展开砖砼再生集料在水泥稳定碎石基层中的试验研究,探讨建筑废弃物在水泥稳定碎石基层中应用的可行性。通过参阅国内外相关文献资料,总结
传统阻燃剂具有一定的阻燃效果,但存在着诸多问题,如阻燃沥青燃烧时发烟量大、阻燃剂毒性强或者使用成本高等等,经济性和环保效益不佳,这在一定程度上阻碍了我国隧道沥青路面的发展,而纯无机材料具有无毒、无害、低碳环保、经济效益好的优点。本文优选出了几种具有代表性的无机阻燃材料,基于针入度、延度、软化点试验和极限氧指数试验对其进行配合比设计,后经硅烷偶联剂表面改性,改善了无机阻燃材料与有机沥青的相容性,最终
锂离子电池(LIB)由于其比能量高、自放电性能优异、无记忆效应、循环寿命长、成本低等优点使得锂离子电池获得了包括便携式电池和动力电池在内的广泛应用。然而随着锂离子电池的广泛应用,锂离子电池安全事故常常见诸报端。如何保证锂离电池优异性能的前提下,解决锂离子电池的安全问题成为当今的研究热点。隔膜作为锂离子电池的重要组成部分,它在电池中主要起两个作用:一个是作为正极和负极之间的物理隔离以防止电池内部短路
金属阴离子污染物在未经有效处理直接排放对环境引起的毒性威胁与安全危害,一直以来引起了社会的广泛关注。强化絮凝技术由于成本低、操作简便,已广泛的应用于污水和废水处理领域。然而,现有絮凝技术在去除金属阴离子污染物方面仍然存在两大难题,一是对金属阴离子污染物去除效率较低,二是絮凝过程产生污泥,形成新的固体废物污染。本文围绕以上两大技术难题,从金属阴离子污染物的强化絮凝入手,构建不同价态金属阴离子污染物优
膨胀土具有吸水膨胀的特性,当其侧向膨胀受到限制时产生侧向的膨胀压力,会给膨胀土地区支挡结构物造成严重危害。但现有试验装置不能卸去由于制样产生的水平应力、不能量测不同上覆荷载下膨胀土侧向膨胀力或不能将侧向膨胀力从总的侧向力中区分出来,故改进现有的试验装置以研究膨胀土侧向膨胀力与上覆荷载的关系,并计算其对支挡结构物稳定性的影响具有工程及理论意义。本文在现有室内固结试验装置的基础上进行改进,保证试样在不
环糊精是一类由D-吡喃葡萄糖单元以α-1,4糖苷键相连的环状化合物,由葡萄糖基转移酶作用于多糖或淀粉生成,常见的天然环糊精有α-、β-、γ-环糊三大类。由于其“外壁亲水,内腔疏水”的特殊结构,环糊精能与许多有机小分子结合形成主-客体超分子包合物,可以改善客体分子的物理化学性能,如提高其水溶性、增加客体分子在水相中的稳定性,因此有效提高客体分子的利用度,使其在医药、食品等方面日益广泛应用。紫苏醛是一
采用拓扑优化可以导得复杂构型的结构。但该复杂构型结构常作为概念设计结构,在大多数情况下,这些设计的几何复杂性不能与传统的制造方法相适应。为了获得实用的解决方案,需要对原设计进行大幅度的修改。这些修改降低了优化结构性能,且许多情况下可能消除了该解的最优性,并使得一些约束不满足。这些问题促使拓扑优化界为特定的制造过程寻求量身定做的优化结构。智能制造约束主要包含长度尺寸要求和可制造性要求。拓扑优化中实体
正极材料对锂离子电池的能量密度、循环寿命具有决定作用。高镍三元材料在电池领域的应用提速,主要得力于高容量、低成本;但是高镍材料在制备和储存中的面临的困难远大于普通三元材料。其中,LiNi0.8Co0.1Mn0.1O2正极材料由于镍含量较高,在充放电过程中容易发生结构变化,尤其是在深度脱锂的状态下发生不可逆相变,导致材料本身存在一些固有的缺陷,如循环性能较差、Li/Ni混排严重、电导率低、安全性差等