论文部分内容阅读
纳米材料是20世纪80年代末期兴起的,是一类具有重要理论价值和广阔应用前景的新型功能材料,被誉为21世纪最有前途的材料。由于其具有粒径小、比表面积大的特点,使其具有奇异的特性,如表面效应、小尺寸效应和宏观量子隧道效应。在本文中我们主要研究膜分离技术在分级分离纳米颗粒的应用研究,获取单分散性的纳米颗粒,主要工作内容包括以下四个方面:在本文的第一章,主要对论文中涉及到的两种纳米材料的制备和应用的情况进行了概括性的介绍。纳米TiO2和纳米Fe2O3作为纳米新材料中的一类重要氧化物,由于其化学性质稳定,催化活性高,使它们在纳米陶瓷、塑料制品、涂料、催化剂以及医学和生物工程等方面有着广泛的应用价值和前景。在第二章中,我们利用TiCl4为原料,尿素为沉淀剂水解制备二氧化钛水合物,采用错流全过滤方式将5μm孔径混合纤维素膜用于对不同大小的水合物体系的分级,并用超滤膜和微滤膜对其进行纯化,除去体系中的氯化铵,有研究表明氯离子的存在,会影响到纳米TiO2烧结后的性能。用zeta电位分析仪测量二氧化钛水合物的粒径大小和粒径分布,发现膜透过和膜截留的样品的分散度皆小于分离前的,且膜透过的样品平均粒径最小,膜截留的最大,未分离的介于前两者之间。水合物经过正丁醇共沸真空干燥后,放入马弗炉500℃烧结两小时。采用XRD、BET、TEM和SEM观察其形貌。研究比较不同样品对苯酚和亚甲基蓝两种体系的光催化降解,结果表明透过膜的样品相比被膜截留的样品具有较高的比表面积和较好的光催化性能。在第三章主要研究了氯离子的含量对纳米Fe2O3团聚情况。发现氯离子的存在强烈地影响纳米Fe2O3的晶粒大小及团聚状态。通过改变沉淀剂滴加速度和搅拌速度,能获得分散性较宽的氧化铁水合物,采用错流全过滤方式将5μm孔径混合纤维素膜用于对不同大小的水合物体系的分级,用Zeta电位分析仪测量氧化铁水合物的粒径大小和粒径分布,发现膜透过和膜截留的样品的分散度皆杏诜掷肭暗?且膜透过的样品平均粒径最小,膜截留的最大,未分离的介于前两者之间。水合物经过真空干燥后,放入马弗炉500℃烧结3小时。采用XRD、BET、TEM和SEM观察其形貌。第四章首次采用超滤技术和研究纳米氧化铁水合物的纯化,通过小试实验发现固含量对膜通量的影响显著,随着固含量的增大料液通量下降明显。然后,我们研究了合适的膜材质、膜参数和操作条件,以保证获得较大的透过通量,摸索出了最佳的操作参数:操作压力为0.48MPa、回流比为15,用PES材质的膜材料进行纯化纳米氧化铁料浆具有最佳的分离效率和分离效果。最后,考虑到污染的控制和分离膜的再利用,我们研究了膜的污染和清洗恢复情况。总之,我们首次研究了膜分离技术在分级分离纳米TiO2和Fe2O3两种体系中的应用,结果都表明膜分离技术在获得窄分布的纳米粉体是可行的,而且分级后得到的纳米TiO2在性能方面也存在差异,为膜分离技术应用在纳米水合物分级分离上提供了新的思路。