流体动力学模型若干问题的研究

来源 :北京工业大学 | 被引量 : 0次 | 上传用户:qwj1234
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文应用奇异摄动理论中的渐近展开匹配方法,能量方法和加权的Sobolev嵌入技巧等,研究了三维迁移率互异的半导体漂流扩散模型与电解液中电扩散模型的拟中性极限问题.本文共分四章.第一章绪论,主要介绍上述方程的物理背景和研究现状.为了方便起见,我们也罗列了本文所用到的一些知识.第二章漂流扩散模型的拟中性极限和边界层.本章研究了三维有界区域中迁移率互异的漂流扩散模型的拟中性极限和边界层问题,与以往研究的不同在于迁移率互异,同时,要求迁移率之间的差无限小,也即是|μn-μp|<δ.首先,引入密度变换将漂流扩散模型等价的转化成关于密度和电场的模型.其次,构造带有内函数,左边界层和右边界层的密度函数和电场函数的近似解,其中,密度函数的内函数带有零阶,二阶和三阶近似,左边界层和右边界层带有二阶,三阶和四阶近似,电场函数的内函数带有零阶,二阶和三阶近似,左边界层和右边界层带有零阶至五阶近似.然后,应用奇异摄动理论中的渐近展开匹配方法求解内函数和边界层函数满足的方程,以及近似解的性质.最后,应用内函数方程和边界层函数方程推导出系统的误差方程,再应用Cauchy-Schwarz不等式,Sobolev引理,Gronwall不等式,分部积分等,对误差方程进行能量估计,在对电场进行高阶能量估计时,由于迁移率的不同以及电场近似解中含有低阶项,使得电场产生了振荡,给进一步能量估计带来了困难,为了克服这一困难,本章对法向导数和切向导数同时能量估计,这是不同于以往的方法,得到了原方程到约化方程的收敛性.第三章电解液中电扩散模型的拟中性极限和初始层.利用奇异摄动理论中的渐近展开匹配方法和能量方法研究了三维周期区域上的电解液中电扩散模型(即Planck-Nernst-Poisson/Navier-Stokes系统)的拟中性极限和初始层问题.首先,应用奇异摄动理论中的渐近展开匹配方法推导了内函数和初始层函数满足的方程,然后,应用内函数和初始层函数的方程推导出了误差方程,最后,引入两个λ-加权的Lyapunov型函数以及Gronwall型熵不等式,并应用近似解的性质,Sobolev引理和分部积分对误差方程进行能量估计,借助于椭圆方程的正则性理论证明了PNP/NS到NP/NS的收敛性.第四章电解液中电扩散模型的拟中性极限和边界层.本章研究三维好初值情况下迁移率互异的电解液电扩散模型的拟中性极限和边界层问题.为处理电场产生的振荡项,本章引入了带有振荡因子为O(1/λ2)的λ-加权的熵不等式,应用能量方法和Gronwall不等式,对误差方程的法向导数和切向导数同时进行能量估计.借助Sobolev嵌入定理以及椭圆方程的正则性,证明了原系统到约化系统的收敛性.
其他文献
湘西位于湖南省西北部,拥有得天独厚的地理位置和丰富多样的自然资源,在巩固脱贫攻坚成果、大力推进乡村振兴的背景下,依托文化旅游及其产业的发展,能够提高当地居民的收入水平,提高人民群众的获得感和幸福感,在推动乡村经济发展的同时进一步改善乡村风貌,建设"神秘湘西"。文章主要围绕湘西文旅产业融合助力乡村经济发展的路径开展研究,提出相应建议,进一步推动乡村经济发展。
海参中多糖含量丰富,占海参干质量6%以上,具有抗肿瘤、抗凝血、抗氧化及抗帕金森病等多种生物学活性,在保健食品和药品开发方面具有广阔的应用前景。海参多糖的结构特性如分子质量、硫酸化模式及硫酸基含量等对其生物学活性具有很大影响,因此研究海参多糖结构对揭示其生物学活性及作用机制具有重要意义。本文在介绍海参多糖结构特性的基础上,重点综述其生物学活性及作用机制,同时总结海参多糖结构对其生物学活性的影响,最后
本研究通过水热法和微波辅助法提取杜仲叶和杜仲皮中的多糖。采用化学分析和红外分析对4种提取物B-HWE、B-MAE、L-HWE和L-MAE的活性成分和结构特点进行表征,研究杜仲皮和杜仲叶中多糖分子物的抗氧化活性及对运动人体免疫机能的影响。研究结果表明:4种提取物有中多糖的结构特性没有明显的差异。微波辅助提取,使天然抗氧化剂和多糖的产量提高。EUOP1、EUOP2、EUSP1和EUSP2的产率分别占9
随着国家"五位一体"的部署,建设生态文明已然是关系人民福祉、关乎民族未来的大计,是实现中国梦的重要内容。"绿水青山就是金山银山",历史遗留的废弃矿山破坏地形地貌和含水层、造成水土流失及地质灾害隐患,亟待开展生态修复工作,通过采取相应的生态修复措施,对类似的历史遗留废弃矿山生态修复具有一定的指导和借鉴意义,本文以新丰江流域的新丰县马头镇路下村历史遗留废弃矿山生态修复项目为例,着重阐述历史遗留废弃矿山
在hopf代数的有限维模范畴中,任意两个不可分解模的张量积如何分解成不可分解模的直和受到了数学家们的广泛关注,有许多有意义的结果.进一步地人们可通过研究hopf代数和量子代数的表示环来理解这类范畴的性质.本学位论文在特征为零的代数闭域上,主要研究有限维量子代数和弱hopf代数的不可分解模的分类,表示环及相关性质,得到以下主要结果:(1)假设q是一个2p-次本原单位根且p≥2,(?)q(sl2)是一
标架理论是小波分析研究的一个重要分支.构造具有优美结构,计算方便快捷有效的对偶标架是函数空间标架理论的一个核心问题.过去三十年来,全空间L2(R)中小波与Gabor标架的研究取得了丰硕的成果,子空间小波与Gabor标架的研究取得了一些进展.本文在不同子空间背景下,引入了恰当的弱Gabor对偶标架概念,并研究了其刻画,构造及唯一性等.研究内容涉及以下两方面:离散周期子集上的弱Gabor对偶标架;直线
L-岩藻酮糖和D-核酮糖都是稀少糖,在食品、农业和医药工业具有广泛的潜在应用价值。它们属于戊糖,戊糖包括醛戊糖和酮戊糖两大类。总共有八种醛戊糖和四种酮戊糖,除少数几种是天然存在的糖,其他大多数都是稀少糖,在自然界存在极少。稀少糖拥有很大的商业应用价值,尤其是在医药领域。由于在自然界中含量极少,且化学合成法难度较大,稀少糖的价格较高,且无法满足工业化生产的需求。通过生物酶法,将L-岩藻糖和D-阿拉伯
电磁流体动力学方程是源自等离子体物理、半导体材料科学中的宏观数学模型,主要包括光滑电磁流体Euler-Maxwell方程组和粘性电磁流体Navier-Stokes-Maxwell方程组.数学上,电磁流体动力学方程的研究主要从两方面展开:研究模型自身的适定性和模型之间的渐近机制.本文主要采用时空混合导数迭代法、反对称矩阵的技巧,以及魏格纳变换等方法,研究了双流非等熵可压缩Euler-Poisson,
密度估计是非参数统计学的重要研究方向,也是回归估计与删失估计的基础.紧支密度估计已取得了丰硕的成果,见Donoho等人的工作(D.L.Donoho,I.M.Johnstone,G.Kerkyacharian,D.Picard.Density estimation by wavelet thresholding.Ann.Statist.,1996,24(2):508-539).非紧支密度估计的研究相
高速公路服务区作为高速公路的重要服务窗口,体现着高速公路的社会形象,如何将智慧建筑理念融入高速公路服务区设计,是目前学界与业界都较为关注重点之一。文章解读了智慧建筑理念,并对近年来高速公路智慧服务区建设现状进行了分析,探讨了高速公路服务区智能化设计路径。