论文部分内容阅读
肋片扰流冷却广泛应用于太阳能空气加热器、换热器、透平叶片内部冷却等领域。透平叶片的内部冷却主要涉及叶片中间的蛇形流道,为达到强化传热的目的,通常将不同类型的肋片浇铸在冷却流道两个相对的壁面上。探究不同结构下强化传热的机理并找寻最优散热结构一直是研究的重点。本文通过数值计算的方法研究了渐缩肋化方通道中的传热特性,重点对于带有直肋、斜肋、V-down型肋和V-up型肋的渐缩通道进行分析,通过改变结构参数如相对肋间距、相对肋高、肋倾角、V型肋的夹角及通道渐缩角来研究其强化传热机理;另外以二次流强度为背景研究了不同类型的肋对于横截面平均纵向涡强度Ses与纵向涡强度Se的影响。研究结果表明:(1)从换热强度与纵向涡强度综合分析,对于渐缩肋化方通道综合传热而言,V-up型肋优于斜肋,斜肋优于V-down型肋,V-down型肋优于直肋。(2)对于带有直肋的渐缩方通道而言,相对肋间距和相对肋高越大时,其产生的纵向涡强度越大,传热增强的同时阻力系数变大。(3)对于带有斜肋的渐缩方通道而言,斜肋在一定程度上抑制纵向涡衰减的同时实现强化传热,相对肋间距为12.5时产生的纵向涡强度最大;相比其它倾角,45°的倾斜角产生的纵向涡强度Se和Nu/Nu0的值最大;等泵功率下倾斜角为(18)(15)°时渐缩带肋通道综合传热特性最佳。(4)对于带有V-down型肋和V-up型肋的渐缩方通道而言,夹角为45°时对应的Ses峰值、Se、Nu/Nu0和f/f0的值均最大;随着相对肋间距增大,纵向涡的影响范围大但是衰减速率快。(5)通道渐缩角越大,流体沿着流动方向被加速,导致阻力迅速增大,然而换热并没有提高太多,故渐缩角越大,综合传热性能越差。(6)肋化渐缩方通道中,由肋产生的纵向涡之间存在相互干涉,另外横截面平均纵向涡强度Se随着雷诺数的增大而增大。(7)Nu随着Se的增大而增大,除直肋外,带有斜肋、V-down型肋、V-up型肋的渐缩通道内纵向涡强度Se与Nu均存在对应关系,其最大误差分别为20%、15%和5%。