论文部分内容阅读
2024和7075铝合金是两种可热处理高强铝合金,目前广泛应用在对材料比强度要求较高的机身蒙皮、翼梁,汽车及轨道交通的制造等领域。两种铝合金的广泛应用不可避免的出现二者之间连接的问题,铆接等机械连接方式增加了结构重量,而2024使用传统电弧焊可焊性不高,7075则不被推荐采用电弧焊。激光焊接能量密度高、加热冷却速度快等特点成为铝合金焊接较优的选则。但是,在高功率密度作用下产生的小孔并不能稳定存在,尤其对于含Mg、Zn较多的7075铝合金,小孔非常不稳定。为解决两种铝合金焊接过程不稳定性问题,本文将使用填充焊丝的方法对两种铝合金进行对接实验研究,并测试分析焊缝组织及性能。本文研究了焊接工艺对过程不稳定性的影响,并探讨了产生影响的机理。通过高速摄像对熔滴过渡过程进行研究,认为激光直接加热及热传导是焊丝熔化的主要加热机制。这种加热机制导致不同光丝间距下熔滴过渡方式的改变,当光丝间距为0时熔滴过渡稳定。通过分析高速摄像得到的不同送丝速度熔滴过渡及等离子体面积的变化,认为熔滴对熔池具有调节能量分配维持小孔前壁稳定的作用,提高送丝速度会提高熔滴过渡频率,稳定焊接过程。针对不同类型气孔研究了焊前清理方法对氢气孔的影响以及工艺对工艺气孔的影响。物理清理比化学清理方法降低氢气孔的作用更加明显。激光偏转及在熔透焊条件下提高送丝速度都会降低气孔率。通过金相分析技术、SEM/EDS技术、拉伸试验及显微硬度测试等手段分析了2319及4043焊丝焊接的焊缝微观组织、微区元素,断口形貌、拉伸强度以及显微硬度。讨论了热影响区过烧现象、熔合线附近柱状晶区、V字形粗晶区、粗大树枝状晶粒组织出现的原因。比较了使用两种填充焊丝时焊缝力学性能,结果表明采用2319焊丝的焊缝抗拉强度达到339.5MPa,比采用4043焊丝的焊缝较高,但塑韧性较差。此外,研究焊缝断裂位置及断口形貌,发现各区域组织对焊缝断裂产生了一定规律的影响。